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Abstract

Introduction: In the context of drug delivery, mesenchymal stromal cells (MSCs) from bone marrow and adipose
tissue have emerged as interesting candidates due to their homing abilities and capacity to carry toxic loads, while
at the same time being highly resistant to the toxic effects. Amongst the many sources of MSCs which have been
identified, the human term placenta has attracted particular interest due to its unique, tissue-related characteristics,
including its high cell yield and virtually absent expression of human leukocyte antigens and co-stimulatory
molecules. Under basal, non-stimulatory conditions, placental MSCs also possess basic characteristics common to
MSCs from other sources. These include the ability to secrete factors which promote cell growth and tissue repair,
as well as immunomodulatory properties. The aim of this study was to investigate MSCs isolated from the amniotic
membrane of human term placenta (hAMSCs) as candidates for drug delivery in vitro.

Methods: We primed hAMSCs from seven different donors with paclitaxel (PTX) and investigated their ability to resist
the cytotoxic effects of PTX, to upload the drug, and to release it over time. We then analyzed whether the uptake and
release of PTX was sufficient to inhibit proliferation of CFPAC-1, a pancreatic tumor cell line sensitive to PTX.

Results: For the first time, our study shows that hAMSCs are highly resistant to PTX and are not only able to uptake the

delivery of cytotoxic agents.

drug, but also release it over time. Moreover, we show that PTX is released from hAMSCs in a sufficient amount to
inhibit tumor cell proliferation, whilst some of the PTX is also retained within the cells.

Conclusion: Taken together, for the first time our results show that placental stem cells can be used as vehicles for the

Introduction

In addition to the well-known ability of bone marrow
mesenchymal stromal cells (MSCs) to differentiate and
exert immunomodulatory effects which make them use-
ful for applications in regenerative medicine, these cells
can also migrate to inflammatory microenvironments [1]
and tumors [2]. The ability of MSCs to home to sites of
injury has brought many researchers to study these cells
as vehicles for the delivery of anti-cancer agents to the
tumor site. To this end, both gene-modified as well as
wild-type MSCs have been used. MSCs have been
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genetically modified to over-express several anti-tumor
factors, such as interleukins, interferons, pro-drugs,
oncolytic viruses, anti-angiogenic agents, pro-apoptotic
proteins, and growth factor antagonists [3]. Despite
promising results in animal models, the genetic ma-
nipulation of MSCs for clinical application is not risk-
free [4]. We have recently demonstrated that MSCs can
behave as chemotherapeutic carriers without genetic
manipulation. This was observed for MSCs from bone mar-
row [5, 6], adipose tissue [7], and dermal fibroblasts [8].
Bone marrow is the best characterized source of adult
stem cells; unfortunately, the harvesting procedure is
highly invasive and the number, differentiation potential,
and maximum life span of MSCs obtained from this tis-
sue significantly decline with the age of the donor [9]. In
comparison, placenta is a very attractive MSC source
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due to its easy, non-invasive, and ethically uncontrover-
sial procurement.

The human amniotic membrane from term placenta has
been recently recognized as a valuable source of mesen-
chymal stromal cells, referred to as hAMSCs [10-12].
hAMSCs have attracted much attention due to their im-
munomodulatory properties [13], and also due to their
paracrine actions and potential applications in regenera-
tive medicine [14]. Interestingly, studies have shown that
hAMSCs interact with and modulate the functions of a
wide variety of immune cells both in vitro [15-19] and
in vivo [20]. Moreover, we have recently demonstrated
that hAMSCs can inhibit tumor cell proliferation in vitro
[21]. This occurred through cell cycle arrest in the GO/
G1 phase, and affected hematopoietic [lymphoid (KGl1a,
Jurkat), myeloid (KG1, U937)], and non-hematopoietic
(Girardi heart, Hela, Saos) tumor cells. Owing to this
property and to the ability of amnion-derived stem cells
to target tumor sites [22], herein we investigated if
hAMSCs were able to uptake the chemotherapeutic
agent paclitaxel, and thus be considered as a means of
drug delivery for anti-tumor therapy.

Materials and methods

Ethics statement

Human term placentae (n = 7) were collected from
healthy women after vaginal delivery or caesarean sec-
tion. Samples were collected after having obtained in-
formed written consent according to the guidelines set
by the Ethics Committee for the Institution of Catholic
Hospitals (CEIOC). The research project was authorized
by Fondazione Poliambulanza.

Isolation, culture, expansion, and characterization of
hAMSC

Human term placentas were processed immediately after
birth, as previously described [18]. Briefly, the amnion
was manually separated from the chorion and washed
extensively in 0.9 % NaCl containing 100U/ml penicillin
and 100 pg/ml streptomycin (both from Sigma, St Louis,
MO, USA) and 2.5 mg/ml amphotericin B (Sigma (or
Sigma-Alrich), St. Louis, MO, USA). Afterwards, the am-
nion was cut into small pieces (3 x 3 c¢m?). Amnion frag-
ments were sterilized by a brief incubation in 0.9 % NaCl
+ 2.5 % Eso Jod (Esoform, Italy) and 3 minutes in PBS
containing 500U/ml penicillin, 500 pg/ml streptomycin,
12.5 pg/ml amphotericin B and 1.87 mg/ml Cefamezin
(Teva Italia Srl, Assago, Italy). Sterilized amnion fragments
were then incubated for 9 minutes at 37 °C in HBSS
(Sigma (or Sigma-Alrich), St. Louis, MO, USA) containing
2.5 U/ml dispase (VWR International Srl, Milan, Italy).
The fragments were digested in complete RPMI 1640
medium (Sigma (or Sigma-Alrich), St. Louis, MO, USA)
supplemented with 0.94 mg/ml collagenase (Roche,
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Mannheim, Germany) and 10 pg/ml DNase (Roche,
Mannheim, Germany) for 2.5-3.0 hours at 37 °C. Amnion
epithelium fragments were then removed by low-g
centrifugation, and mobilized MSC were passed through
100-um and 70-um cell strainers and collected by centri-
fugation. These cells are referred to as human amniotic
mesenchymal stromal cells (hAMSCs).

To obtain cells at different passages, freshly isolated
PO hAMSCs were plated at a density of 50 x 10*/cm>
hAMSCs were cultured at 37 °C and 5 % CO, in DMEM
complete medium supplemented with 10 % heat-
inactivated fetal bovine serum (FBS, Sigma (or Sigma-
Alrich), St. Louis, MO, USA), 2 mM L-glutamine (Sigma
(or Sigma-Alrich), St. Louis, MO, USA), 100 U/ml peni-
cillin and 100 pg/ml streptomycin. For phenotype evalu-
ation, hAMSCs were trypsinized and subsequently
washed with FACS buffer (0.1 % sodium azide (Sigma-
Aldrich) and 0.1 % FBS (Sigma-Aldrich) in PBS). Cells
were incubated for 20 minutes at 4 °C with anti-human
fluorescein isothiocyanate (FITC), or phycoerythrin-
(PE) or allophycocyanin (APC)-conjugated antibodies,
or isotype controls (specified below) with 20 mg/ml
polyglobin (Gammagard®, Baxter, IL, USA) prepared in
PBS with 1 % BSA to block non-specific binding. After
incubation cells were washed with FACS buffer. Dead
cells were gated out by propidium iodide (PI) staining
(for cell surface staining). The clones and suppliers of
the monoclonal antibodies used are as follows: CD44
(clone L178), CD73 (AD2), CD90 (5E10), CD45 (2D1),
HLA-DR (TU36), CD105 (266), CD13 (L138), and
HLA-ABC (G46-2.6) were all purchased from BD Bio-
science, San Jose, CA, USA.

Intracellular P-glycoprotein (P-gp) expression was ana-
lyzed using a mouse anti-human monoclonal antibody
(clone JSB-1, Chemicon International Merck Millipore,
Billerica, MA, USA). Briefly, cells were fixed and perme-
abilized using BD CytoFix/CytoPerm (BD Biosciences,
San Jose, CA, USA) for 20 minutes at 4 °C, washed twice
with Perm/Wash Buffer 1X (BD Biosciences, San Jose,
CA, USA), and incubated with P-gp antibody for 25 mi-
nutes at room temperature. After two washes in Perm/
Wash Buffer 1X, cells were incubated with goat anti-
mouse polyclonal immunoglobulins/RPE Goat F(ab’)2
(DAKO Corporation, Denmark), and washed prior to ac-
quisition. Cells were acquired on a FACS Calibur machine
using CellQuest Software (BD Biosciences, San Jose,
CA, USA) and results were analyzed using FCS Express
4 (De Novo Software, Los Angeles, CA, USA). IgG1l
(clone X40, BD Biosciences, San Jose, CA, USA) and
IgG2b (clone MG2b-57, Biolegend, San Diego, CA,
USA) were used as isotype controls. Quantification of
P-gp expression was performed by determining the
mean fluorescence intensity (MFI) ratio as follows: MFI
of P-gp/MFI isotype control.
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Sensitivity of hAMSCs to Paclitaxel

Paclitaxel (PTX) was purchased from AdipoGen (Vinci-
Biochem, Vinci, Italy), diluted in dimethylsulfoxide to a
concentration of 5 mg/ml, and stored at —-20 °C in 5-pl
aliquots. PTX was thawed immediately prior to use and
diluted in culture medium to obtain the desired
concentration.

The anti-proliferative and cytotoxic effects of PTX on
hAMSCs were evaluated in 96-multiwell plates (Corning,
Corning, NY, USA) by first seeding 2,000 and 10,000 cells/
well, respectively, in 100 pl/well of complete medium. The
cells were then incubated for 24 hours (cytotoxicity test)
or 7 days (anti-proliferative assay) with 10-fold dilutions
of PTX (from 1 ng/ml to 10,000 ng/ml). At the end of
the incubation, cell proliferation and viability were
evaluated by a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphe-
nyltetrazolium bromide (MTT) assay, as previously de-
scribed [5]. The inhibitory concentrations (ICs, and
ICoy) were determined according to the Reed and
Muench formula [6] or by linear regression analysis.

Paclitaxel priming of hAMSCs

Sub-confluent cultures (3-4 x 10° cells) of hAMSCs
were exposed to 2,000 ng/ml of PTX. Twenty-four hours
later, the cells were collected, counted, and seeded at the
concentration 10° cells/ml, according to a previously de-
scribed protocol [5]. Conditioned media from primed
hAMSCs (hAMSCsPTX-CM) were collected after 48
hours, centrifuged at 2,500 g for 15 minutes to discard cell
debris, aliquoted, and stored at —70 °C. The remaining cells
were trypsinized and then lysed by resuspension (10° cells/
ml) in bi-distilled water and four freeze/thaw cycles. After
centrifugation at 2,500 g for 15 minutes, cell debris was dis-
carded and the lysates (R AMSCsPTX-LYS) were aliquoted
and stored at 70 °C.

In order to evaluate the release of PTX over time,
hAMSCsPTX-CM were collected at different timepoints
(48, 72, 120 hours), and after each collection hAMSCsPTX-
CM was replaced with fresh medium. Both conditioned
media (CM) and lysates (LYS) were tested in vitro for their
anti-proliferative activity against CFPAC-1, a human ductal
pancreatic adenocarcinoma cell line highly sensitive to
PTX. The values obtained were normalized by CM and
LYS from untreated hAMSCs.

Modulation of hAMSC sensitivity to PTX with verapamil
Verapamil (VP), a P-gp inhibitor, was purchased as a 5.5
mM solution for i.v. injection (Isoptin, Abbott, Rome Italy).
The modulation of PTX sensitivity was evaluated through a
proliferation assay as reported above. Cells were seeded in
the presence of increasing PTX concentrations and 20 uM
of VP, a dose previously demonstrated to affect PTX sensi-
tivity in a murine bone marrow stromal cell line [5].
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In vitro anti-proliferative assay on CFPAC-1 of PTX, CM
and LYS from PTX-primed hAMSCs

The effects of PTX, hAMSCsPTX-CM, and hAMSCsPTX-
LYS were studied on CFPAC-1 using a MTT assay. Briefly,
two-fold serial dilutions of pure PTX, PTX-CM, or PTX-
LYS were prepared in 100 pl of culture medium/well in 96-
multiwell plates (Corning, USA) and then 1,000 tumor cells
were added to each well. Tumor cell viability was evaluated
by the MTT assay after 7 days of incubation at 37 °C and
5 % CO,. The percentages of viability were calculated by
dividing the optical density of tumor cells grown in PTX-
CM or PTX-LYS by the optical density found in cells
grown in the same dilution of CM or LYS obtained from
control hAMSCs. The anti-tumor activity of PTX-CM and
PTX-LYS were compared to that of pure PTX and
expressed as paclitaxel equivalent concentration (PECcy
and PECpys, respectively) according to the following
algorithm:

Vs is the volume (ul/well) of CM or LYS able to in-
hibit CFPAC-1 proliferation by 50 %; IC5,PTX is the
concentration (ng/ml) of pure paclitaxel able to inhibit
CFPAC-1 proliferation by 50 %. The amount of PTX in-
ternalized and released by a single hAMSC cell (PECcy,
picograms (pg)/cell) and the amount of PTX internalized
and retained inside each hAMSC (PECiys, pg/cell) was
determined as follows:

PEC(pg/cell) = PEC(ng/ml)
x CM or LYS volume(ml)
x 1000/number of cells seeded.

The sum PECcy, PECrys, both expressed as pg/cell,
indicates the total amount of PTX incorporated by a sin-
gle cell after 24 hours of exposure to 2,000 ng /ml of
PTX.

Statistical analysis

Comparison between different hRAMSC donors was per-
formed by a multiple comparison post-test (one-way
analysis of variance (ANOVA)) and p values <0.05 were
considered significant. Values represent mean + standard
deviation (SD).

Results

hAMSC characterization

hAMSCs were used at either passages 3 or 4 and were
analyzed for phenotype and morphology. Figure 1 re-
ports the phenotype of hAMSCs, which is in line with
previously published studies showing the expression of
mesenchymal lineage markers CD90, CD73, CD44,
CD13, HLA-ABC, and CD105, and absence of CD45
and HLA-DR [15, 23]. Interestingly, we did not notice
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(See figure on previous page.)

Fig. 1 Characterization of human amniotic mesenchymal stromal cells (hAMSCs). Phenotype of unprimed (a) and paclitaxel (PTX)-primed (b)
hAMSCs. The percentage of positive cells is indicated in each plot. Cell morphology is shown in panel ¢, magnification x 4. The images on the
left show unprimed hAMSC (top) or hAMSC after the 24-hour treatment with 2,000 ng/ml of PTX (bottom). The images on the right show
unprimed hAMSC (top) or hAMSC at the time at which conditioned media and lysates were collected and tested for their anti-proliferative

activity against CFPAC-1 (bottom, 48 hrs)

any substantial differences in marker expression between
unprimed (Fig. 1a) and PTX-primed (Fig. 1b) hAMSCs.

The morphology of unprimed and PTX-primed
hAMSCs is shown in Fig. 1c. Twenty-four hours after
the addition of PTX, hAMSCs were more enlarged and
had increased granularity when compared to their un-
primed controls. After 48 hours, PTX-primed cells re-
covered their fibroblast-like morphology, similar to their
unprimed counterparts.

hAMSC sensitivity to PTX

hAMSCs were highly resistant to PTX cytotoxicity
when evaluated 24 hours after treatment. Their viability
was >90 % even at the highest PTX concentration tested
(10 pg/ml), (Fig. 2a). Based on these results, we established
that a PTX treatment time of 24 hours was suitable, and
that a 2,000 ng/ml dose would be used for experiments
with hAMSCs. This is in accordance with a previous study
that used the same concentration and treatment duration
for priming bone marrow (BM)-MSCs with PTX [5].

Concerning the effects of PTX on the proliferation of
hAMSCs (Fig. 2b and c), we observed significant hetero-
geneity in PTX sensitivity amongst hAMSCs from the
seven donors: the ICs, values ranged from 34.85 ng/ml
to 659.12 ng/ml (Fig. 2c).

Evaluation of PTX release from primed hAMSCs

After having observed that hAMSCs were resistant to the
cytotoxic effect of PTX, we then sought to investigate if
they could take up and release the drug in culture, a char-
acteristic previously observed using MSC from other
sources [5]. To this end, we evaluated the release of the
drug over time by collecting and replacing culture
medium at different time intervals. hRAMSCsPTX-CM was
collected at 48, 72, and 120 hours after priming with PTX
(Fig. 3a). For the four out of seven donors tested, we ob-
served that the release of the drug was highest after 48
hours, and then decreased over time. PTX was detected in
the CM collected from hAMSCs cultured for up to 120
hours after priming. In order to investigate if the PTX
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released from hAMSCs was sufficient to inhibit tumor cell
proliferation, hRAMSCs were subcultured for an additional
48 hours after priming, which represented the time point
at which we observed the highest release of the drug and
is also in accordance with a previously described protocol
[5]. The anti-proliferative potential of hAMSCsPTX-CM
was evaluated on CFPAC-1, a human pancreatic adenocar-
cinoma cell line highly sensitive to PTX (IC5y = 3.97 +
4.48 ng/ml, n = 47), and compared to pure PTX (Fig. 3b).
The hAMSCsPTX-CM from all seven donors produced
a dose-dependent, anti-proliferative effect on CFPAC-1
(Fig. 3b).

The highest release of PTX was observed after 48
hours and represented approximately one half (59.3 %)
of the incorporated drug, which was comparable to a re-
lease of approximately 0.51 + 0.29 pg/cell (Fig. 3a). This
suggests that some PTX was retained by the cells and
not released, an observation previously also reported for
MSCs from bone marrow [5]. To evaluate the amount of

PTX internalized but not released into hAMSCsPTX-
CM, at the end of the 48 hours of subculture and after
the collection of hRAMSCsPTX-CM (release phase), cells
were trypsinized and lysed. The presence of PTX in the ly-
sates (hAMSCsPTX-LYS) was then tested by analyzing the
effects of hAMSCsPTX-LYS on the proliferation of
CFPAC-1 tumor cells. Figure 4a shows that hRAMSCsPTX-
LYS was able to inhibit CFPAC-1 proliferation with a
trend similar to hRAMSCsPTX-CM, suggesting that a pro-
portion of the internalized PTX is not released into the
culture medium, but rather, is retained inside primed
cells. The difference observed between hAMSCsPTX-LYS
and hAMSCsPTX-CM in inhibiting CFPAC-1 tumor cell
proliferation was not significant, and could be influenced
by the number of hAMSCs and the volume of diluent used
for the preparations of CM and LYS. By considering the
PEC values found in hAMSCsPTX-CM and hAMSCsPTX-
LYS, we calculated the percentages of PTX released and
retained by the cells, respectively. As shown in Fig. 4b,
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more than 50 % of the incorporated PTX was released by
the primed cells during the subculture phase (59.02 +
63.56 %, mean value obtained with five out seven donors
tested) and the remaining amount (40.98 + 36.81 %) was
retained inside hAMSCs primed with PTX.

Effect of verapamil on PTX sensitivity and uptake/release
ability of hAMSCs

P-gp has been described to be associated with drug re-
sistance through an increased drug efflux from tumor
cells [24]. In order to investigate whether P-gp under-
lies the mechanism by which hAMSC are resistant to
PTX, we first analyzed P-gp expression in hAMSCs
from the seven donors. P-gp was expressed in six out
of seven hAMSC donors analyzed, with a mean ratio of
fluorescence intensity (MFI) of 2.2 + 0.39 (Fig. 5a).
Next, we investigated if blocking the pump with verap-
amil (VP), an inhibitor of P-gp, could alter the
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sensitivity of hAMSCs to PTX. As shown in Fig. 5b, the
presence of VP had no effect on hAMSC sensitivity to
the anti-proliferative activity of PTX. Furthermore, as
shown in Fig. 5¢ and d, the presence of 20 pM VP dur-
ing the PTX uptake phase did not significantly alter the
amount of drug internalized and subsequently released
by hAMSCs. In fact, in line with previous observations
(Fig. 4b), 59.19 % of the incorporated PTX was released
into the culture medium and 40.81 % was retained in-
side the cells (Fig. 5e).

Discussion

For the first time we demonstrate that MSCs from the
amniotic membrane of human term placenta can be
loaded with PTX and can release the drug over time.
Notably, the drug released from hAMSCs is able to in-
hibit tumor cell proliferation in vitro. The findings de-
scribed herein make these cells interesting candidates
for drug delivery vehicles, also considering that they are
able to inhibit tumor cell proliferation per se under spe-
cific culture conditions in vitro [21].

We show that hAMSCs are resistant to the cytotoxic
effect of PTX, a drug known for its strong anti-tumor
[25] and anti-angiogenic activities [26], and currently
used to treat advanced solid tumors [27-30]. Resistance
to PTX has been reported in MSC from other sources
(BM [5], adipose tissue [7] and dermal fibroblasts [8]).

We observed significant heterogeneity in the ability of
PTX to inhibit proliferation of hAMSCs from seven
healthy donors; indeed, the range of ICs, values was
34.85-659.12 ng/ml. Interesting, placental MSCs from
all seven donors had higher resistance to PTX when
compared to MSCs from other sources. In our previous
studies, MSCs from alternative sources had more homo-
geneous PTX sensitivity, regardless of the donors. ICs
values for BM-MSCs, AT-MSCs, and dermal fibroblasts
were 4.07 + 1.75 ng/ml [5], 2.55 + 1.02 ng/ml [7], and
7.01 + 2.17 ng/ml [8], respectively.

Even though most of the incorporated drug was re-
leased within 48 hours, it is interesting to note that drug
was released into the culture medium for up to 120
hours after priming. Although the mechanism of PTX
binding to microtubules has been extensively studied
[25], very little is known about the molecular mecha-
nisms at the basis of the drug resistance of MSCs, or the
capacity of these cells to accumulate and release PTX. In
previous experiments, we demonstrated the expression
of P-gp, the first discovered and the best-characterized
of drug-efflux transporters, by human BM-MSCs [5].
Over the last few years, several studies have been per-
formed to better understand the role that placenta plays in
distributing pharmacological agents within the maternal
and fetal compartments [31] and the presence of several
drug efflux proteins in placenta has been demonstrated
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Fig. 5 Effect of verapamil on paclitaxel (PTX) toxicity and PTX uptake/release by human amniotic mesenchymal stromal cells (hAMSCs). a P-glycoprotein
(P-gp) expression is represented as the ratio of mean fluorescence intensity (MF) for each donor: nd not determined. b Proliferation of hAMSCs in the
presence of PTX and 20 uM verapamil (VP). Half maximal inhibitory concentration (ICsq) values (mean + SD) were calculated by linear regression analysis.

¢ Proliferation curves of CFPAC-1 in the presence of serial dilutions of PTX (white circles), conditioned media from PTX-primed hAMSCs (hAMSCSPTX-CM)
(black circles) or hAMSCSPTX-CM collected from cells primed with PTX in the presence of 20 uM VP (black triangles). d Proliferation curves of CFPAC-1 in
the presence of serial dilutions of hAMSCsPTX-CM (solid line) or hAMSCSPTX-LYS (dashed line) from PTX primed hAMSCs. Both CM and LYS were obtained
from hAMSCs primed with PTX in the presence of 20 uM VP. @ Amount of PTX incorporated and released by hAMSCs (CM) and the amount incorporated
and retained inside the cells (LYS), expressed as percentages of the total incorporated PTX, considered 100 %. hAMSCs were primed in the presence of 20
UM VP. Bars represent the mean values + SD. The difference between CM and LYS was not statistically significant (p >0.05). To evaluate the effect of VP,
hAMSCs from two donors were used

[32]. For example, the expression of the breast cancer re-  between protein expression and activity, and by the poly-
sistant protein (BCRP) has been previously described [33],  morphism of the MDRI gene [37]. Furthermore, placenta
while other authors confirmed the presence of P-gp in is known to express a spectrum of metabolizing enzymes
syncytiotrophoblast cells [34, 35]. It is interesting to note  [37]; among them are drug-metabolizing CYP enzymes
that, despite its presence, P-gp protein does not seem to  (such as CYP1A and CYP2E1). Further studies are there-
have a role in PTX transport in human placenta [36]. The  fore warranted to better clarify other mechanisms of re-
lack of correlation between P-gp expression and PTX  sistance, which could also be acting in placental MSCs,
transport could be explained by the inverse relationship  such as mutations in the tubulin gene [38], presence of
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different tubulin isotypes [39], or altered dynamics of mi-
crotubules [40]. Studies to verify the possible role of survi-
vin, which has been shown to regulate cell division and/or
survival in the presence of Taxol [41], would also provide
relevant insight.

Notwithstanding the mechanism by which hAMSCs
take up and secrete PTX, our data demonstrate for
the first time that through a simple process of
in vitro priming, these cells incorporate PTX in an
amount sufficient to inhibit tumor cell proliferation
in vitro.

Amongst the different MSC sources investigated and
identified over the years, the human term placenta has
drawn increased interest mainly due to its non-invasive
procurement and large cell yield. Placental MSCs also
share basic properties with MSCs from other sources,
such as bone marrow. In addition, they offer significant
advantages for application in the clinic due to their im-
munomodulatory capacities [15, 19, 20], making them
very attractive for transplantation in allogeneic settings.
Therefore, in addition to the advantages of using pla-
centa as a source of MSCs, their ability to take up and
release PTX over time in a sufficient amount to inhibit
tumor cell proliferation could surely have a significant
impact in the context of targeted cancer therapy.

Conclusions

Herein, we demonstrate that mesenchymal stromal cells
from the amniotic membrane of human term placenta
(hAMSCs) are highly resistant to the cytotoxicity of
PTX. Of note, hAMSCs are able to take up, retain, and
release PTX, as shown by the anti-proliferative effects
exerted by lysates and conditioned medium obtained
from PTX-primed hAMSCs on tumor cells in vitro.
Interestingly, we also show that P-gp, even though
expressed by hAMSCs, does not seem to be implicated
in hAMSC resistance to PTX, as shown by the fact that
blocking P-gp with verapamil had no effect on hAMSC
sensitivity to the anti-proliferative activity of PTX. Fur-
thermore, P-gp inhibition did not significantly alter the
amount of drug internalized and subsequently released
by hAMSCs.

Taken together, our results show that placental stem
cells can be used as vehicles for delivery of cytotoxic
agents, thus putting forth a new potential strategy for
the delivery of cytotoxic loads to tumors, and at the
same time contributing to our understanding of placen-
tal MSC, a rapidly evolving field of interest.
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