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The immune response of stem cells in
subretinal transplantation

Bikun Xian and Bing Huang*
Abstract

Stem cell transplantation is a potential curative treatment
for degenerative diseases of the retina. Among cell
injection sites, the subretinal space (SRS) is particularly
advantageous as it is maintained as an immune
privileged site by the retinal pigment epithelium (RPE)
layer. Thus, the success of subretinal transplantation
depends on maintenance of RPE integrity. Moreover,
both embryonic stem cells (ESCs) and mesenchymal
stem cells (MSCs) have negligible immunogenicity and in
fact are immunosuppressive. Indeed, many studies have
demonstrated that immunosuppressive drugs are not
necessary for subretinal transplantation of stem cells if
the blood-retinal barrier is not breached during surgery.
The immunogenicity of induced pluripotent stem cells
(iPSCs) appears more complex, and requires careful study
before clinical application. Despite low rates of graft
rejection in animal models, survival rates for ESCs, MSCs,
and iPSCs in retina are generally poor, possibly due to
resident microglia activated by cell transplantation. To
improve graft survival in SRS transplantation, damage to
the blood-retinal barrier must be minimized using
appropriate surgical techniques. In addition, agents that
inhibit microglial activation may be required. Finally,
immunosuppressants may be required, at least
temporarily, until the blood-retinal barrier heals. We
review surgical methods and drug regimens to enhance
the likelihood of graft survival after SRS transplantation.
limiting membrane of the retina. The RPE is critical for
the immunoprivileged status of the SRS. Sugita et al.
Introduction
Retinal degenerative diseases such as age-related macular
degeneration and retinitis pigmentosa are characterized by
irreversible loss of retinal pigment epithelium (RPE) cells,
photoreceptors, choriocapillaries, and other retinal cells
[1]. These degenerative diseases afflict millions of people
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worldwide but there are currently no broadly effective
treatments for them. Stem cell-based therapy is a potential
approach for the treatment of retinal degenerative diseases
[2–7], and many animal studies [8–15] and some clinical
trials [16–18] have indeed shown encouraging results.
Stem cells have the capacity for both self-renewal and

differentiation into multiple cell lineages (pluripotency)
[19]. They also have low immunogenicity [20, 21], redu-
cing the chance of rejection. Moreover, the subretinal
space (SRS) is an immunoprivileged site within the eye
[22] and thus a logical target for cell transplantation. In
fact, grafts transplanted into the SRS have shown better
migration and integration than cells transplanted into
the vitreous cavity [23, 24]. Transplantation of low-
immunogenicity cells into this immunoprivileged site
appears particularly promising, although most studies
using stem cells for SRS transplantation have observed
poor survival. Successful transplantation thus requires
more detailed knowledge of how the host immune sys-
tem responds to SRS stem cell transplantation. In this
review, we discuss the immune characteristics of the
SRS and of various stem cells, and their interaction after
transplantation. We then summarize methods that can
suppress the immune response of the host and improve
graft survival.
Immune privilege of the subretinal space
The SRS is the area between the RPE layer and the outer

[25] found that RPE cells in vitro can suppress T-cell
activation by direct cell-to-cell contact, and Zamiri and
colleagues [26] reported that just the supernatant of the
RPE eyecup suppressed T-cell activation and production
of interferon. Wenkel and Streilein [27] reported that
the SRS suppressed cell-associated and soluble antigen-
specific delayed-type hypersensitivity. Moreover, they
found that the immune privilege of the SRS was
dependent on the presence of an intact and healthy RPE
cell monolayer. The mechanisms conferring immune
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privilege include (1) suppression of T-cell activation by re-
lease of cytokines from the RPE, such as transforming
growth factor-β [28], thrombospondin-1 [29], prostaglan-
din E2 [25], cytotoxic T lymphocyte associated antigen-2α
[30], and retinoic acid [31]; (2) production of other im-
munosuppressive factors by RPE cells that suppress innate
immune activity, including pigment epithelium-derived
factor and somatostatin [32]; (3) surface expression of pro-
gram death-1 (PD-L1) [33] and Fas ligand [34] by RPE
cells; (4) conversion of CD8+ and CD4+ T cells into regu-
latory T cells [30]; and (5) the intact physical barrier of the
RPE layer [27].

The immunogenicity of stem cells
Stem cells hold great promise for regenerative medi-
cine due to their pluripotency and capacity for self-
renewal. As one of the most important characteristics
of a potential cell for grafting, immunogenicity has
been extensively researched. Yuan et al. [35] reported
that embryonic stem cells (ESCs) and their derivatives
escaped host immune attack and survived for long pe-
riods in animal models. There are at least three rea-
sons for this low immunogenicity. First, human ESCs
express low levels of human leukocyte antigen (HLA)
class I molecules and do not express HLA class II mole-
cules in either the resting or differentiated state [36, 37].
Second, ESCs lack co-stimulatory molecules, such as
CD80 and CD86 [38]. Third, ESCs suppress naive and
dendritic cell-mediated T-cell proliferation in allogeneic
settings [39]. Like ESCs, mesenchymal stem cells (MSCs)
also have negligible immunogenicity and the capacity for
immune suppression. MSCs express low levels of major
histocompatibility complex (MHC) class I molecules but
lack expression of MHC class II molecules and the co-
stimulary molecules CD80, CD86, and CD40 [40–42].
In addition, MSCs inhibit dendritic cells [43–45], T
cells [46, 47], B cells [48], natural killer cells [49, 50],
and macrophages [51]. Contrary to expectation, how-
ever, some studies have found that induced pluripotent
stem cells (iPSCs) derived from autologous cells are
rejected by the recipient.
Zhao and colleagues [52] reported that, after repro-

gramming, iPSCs expressed high levels of Zg16 and
Hormad, which led to immunogenicity. Moreover, the
teratomas formed by these iPSCs were rejected by the
recipient after syngeneic subcutaneous transplantation.
In contrast, Guha et al. [53] found no correlation
between the expression of Zg16 and Hormad and the
survival of syngeneic iPSCs grafts, as neither undifferen-
tiated syngeneic iPSCs nor differentiated cells derived
from them were rejected after subrenal capsule transplant-
ation. Similarly, Araki et al. [20] reported that iPSCs were
no more immunogenic than ESCs. To explain this contra-
diction, Kaneko and Yamanaka speculated that variation
in immune response may be due to the different iPSCs
lines and vectors used for reprogramming [54]. The iPSCs
with strong immunogenicity reported by Zhao et al. [52]
were derived with retroviruses. Retroviral vectors can
change host gene expression by integrating at transcrip-
tional sites, resulting in the abnormal production of
immunogenic proteins. Kaneko and Yamanaka thus
suggested that retroviral vectors should not be used to
generate iPSCs for transplantation therapy [54]. Alter-
natively, Fu [55] suggested that, compared with cells
grafted into the subrenal capsule, cells grafted subcuta-
neously are exposed to more functional dendritic cells
(such as Langerhans cells). Therefore, even cells with
immunogenicity in other tissues (like iPSCs trans-
formed using retroviral vectors) may not induce rejec-
tion when injected into the subrenal capsule. Thus, the
subrenal capsule may not be an appropriate site for
studying the immune response to minor antigens in
preclinical studies. Cao et al. [56] speculated that iPSCs
could acquire genetic and/or epigenetic defects after re-
programming, thereby generating immunogenicity. As
not all descendants of iPSCs express the defects during
development and differentiation, however, autologous
iPSCs could show much weaker immunogenicity than
allografts. If they expressed immunogenic minor antigens
anomalously, however, they still could elicit immune rejec-
tion [56]. Hence, the potential immunogenicity of each
iPSC-derived cell line should be tested carefully before
clinical application.

Studies of immune rejection after subretinal
transplantation
In the majority of instances, donor cells survive SRS trans-
plantation without immunosuppressive drugs. We ana-
lyzed a myriad of studies [57–70] focused on the immune
reaction and/or using immunosuppressive drugs. Findings
can be summarized as follows. First, none of the hosts
administered immunosuppressive drugs showed immune
rejection during the observation period, suggesting that
immunosuppressants are effective for prevention of
immune rejection of grafts within the SRS. Second, only
three studies reported classic rejection at the transplant
site. One found disruption of the host RPE layer at the
transplant site [64], one used laser burn [60], and one used
diathermy [58] during surgery, and none applied postoper-
ative immunosuppression. Although laser application pro-
moted migration and integration of donor cells into host
retina [71], it led to focal injury of the RPE and likely brea-
ched the blood-retinal barrier, implying that the integrity
of the blood-retinal barrier also plays an important role in
graft preservation. Lu and colleagues [67] provided further
evidence that maintenance of blood-retinal barrier integ-
rity, rather than immunosuppression, is the critical factor
for preventing rejection following SRS transplantation. In
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their study, they excluded eyes with a damaged blood-retinal
barrier after subretinal injection and found no statistical
difference in rejection rate between the immunosuppressor-
treated group and the no immunosuppressor group. In-
deed, both groups achieved therapeutic benefits from
transplantation without immunological rejection. These
observations collectively demonstrate that if the blood-
retinal barrier is preserved during surgery, immunosup-
pressive drugs are not necessary. Note also that several of
the studies used rabbits as recipients, all receiving postop-
erative immunosuppression. While no immune rejection
was reported, the survival of the grafts was generally poor
[63–65]. This may be associated with the unique retinal
anatomy of rabbits. Compared with holangiotic species
such as humans and rats, the rabbit retina is merangiotic
[72], meaning that only part of the inner retina is supplied
by retinal vessels and is more dependent, therefore, on
choriocapillaries, while humans and rats possess a retinal
vasculature that penetrates throughout the inner retina.
Thus, the rabbit may not be the best candidate for animal
investigations of retinal cell therapy.

Surgical methods used in subretinal
transplantation
A variety of surgical techniques have been developed to
allow efficient SRS transplantation while protecting the
blood-retinal barrier. For rodents with small eyes (rats and
mice), scleral incision by a needle or blade is followed by
stem cell injection through a syringe. In order to prevent
reflux and improve the survival of cell grafts, several stud-
ies have used corneal puncture, which also reduces intra-
ocular pressure. Some groups have kept the needle in the
injection site for a few seconds then pulled it out slowly to
maximize cell delivery to the SRS and minimize the po-
tential for damage [73], and another created a self-sealing
sclerotomy [74]. For subjects with larger eyes, such as rab-
bits, pigs, monkeys, and humans, an initial posterior pars
plana vitrectomy has been performed to induce posterior
vitreous detachment, then a syringe used to deliver the
grafted cells. We suggest that the vitrectomy can reduce
cell reflux and intraocular pressure. While cells are usually
injected as a suspension, some groups have created new
approaches to cell delivery. Kamao et al. [58] generated
monolayer cell sheets without scaffolds using collagen gel
and collagenase, while Stanzel et al. [63] and Hu et al.
[75] cultured and maintained seed cells on polyester
membranes and parylene substrates, respectively. In all
these studies, cells were transplanted as a layered structure
rather than as a suspension. Kundu et al. [76] demon-
strated that suspended cells injected in the SRS could inte-
grate into the host retina, but survival was poor due to
loss of cells by reflux, while cell layer transplantation
allowed for greater cell retention. If cell layers are trans-
planted, any scaffold used must be biocompatible and
non-immunogenic but strong and flexible enough to with-
stand surgical manipulation [76].
However, all current clinical trials registered by the US

National Institutes of Health use suspended cells for sub-
retinal transplantation. Most use MA09-hRPE cells, which
are fully differentiated from human ESCs, while one is
using OpRegen cells, which are RPE cells derived from
human ESCs (NCT02286089). Two groups are using
human central nervous system stem cells (NCT01632527,
NCT02137915), another team human retinal progenitor
cells (NCT02464436), and another autologous bone
marrow-derived stem cells (NCT01920867). In Japan
(RIKEN), iPSCs are currently being used in clinical trials
to treat age-related macular degeneration.

Microglial activation in the retina following stem
cell transplant
While most studies have found no evidence of graft re-
jection, such as leakage of fluorescein on fluorescein
angiography or immune cell infiltration at transplant-
ation sites, long-term graft survival rates are often poor.
This poor survival is a major hindrance to clinical appli-
cation and has thus received extensive experimental
attention. Singhal et al. [77] observed substantial micro-
glial accumulation at the site of cell injection, which
inhibited Müller stem cell migration, and Bull et al. [78]
reported that, in spite of an immunosuppressive regi-
men, Müller stem cells transplanted into the vitreous or
SRS were eventually rejected due to attack by microglia/
macrophages.
Microglia are the resident cells mediating innate im-

munity in the retina. There are two distinct microglial
populations: the perivascular macrophages situated within
the glial limitans of the inner retinal vasculature and the
ramified retinal microglia within the tissue parenchyma
[79, 80]. In the developing human retina, microglia are
present in the developing nerve fiber as well as the gan-
glion cell, inner plexiform, and outer plexiform layers [81].
Ramified microglial cells are characterized by small, slen-
der cell bodies, with long, radial, and highly dynamic pro-
trusions [82]. This special morphology allows the entire
microglia population to cover every part of the retina and
contribute to tissue homeostasis without activation [83].
However, the situation changes when microglia are acti-
vated by nerve degeneration [82], inflammation [84, 85],
traumatic nerve lesion [86], or excessive light overexpos-
ure [87]. Activated microglia show directed polarity and
rapidly migrate toward the region of damage. In the acti-
vated state, they have dual capacity to modulate neurogen-
esis, both by enhancing progenitor cell proliferation and
by inhibiting neurosphere generation and the extent of
differentiation [88]. Activated microglia also exert com-
plex effects on immunity and cell survival by secreting
various cytokines, such as interleukin (IL)-1β, IL-10,
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tumor necrosis factor (TNF)-α, and IL-6 [89]. While IL-10
is generally considered anti-inflammatory, immunosup-
pressive, and neuroprotective [90], IL-1β, IL-6, and TNF-α
are pro-inflammatory and neurotoxic [84].

Treatments for moderating microglial activation
Endogenous glucocorticoids, such as triamcinolone, pred-
nisolone, and dexamethasone, are well known suppressors
of the innate immune response [91]. Glucocorticoids can
suppress cytokine-mediated microglia proliferation [92]
and accumulation [93], and downregulate cytotoxic mole-
cules such as nitric oxide [94], TNF, IL-6 [95], and glutam-
ate [96]. Singhal et al. [93] reported that the survival of
transplanted cells was significantly enhanced by triamcin-
olone. The novel resveratrol analogue RV09 (5-[2-(4-bro-
mothiophen-2-yl)vinyl]benzene-1,3-diol) can also control
microglial activation and cytotoxicity. Meng et al. [97]
found that RV09 inhibited lipopolysaccharide-induced ni-
tric oxide and TNF-α production in microglia. In addition
to glucocorticoids and RV09, minocycline suppressed
microglial activation [98–101] and prevented neuronal
loss by inhibiting inducible nitric oxide synthase induction
[102], caspase expression [103], and cytochrome c release
[104]. However, while 10 μg/ml or lower did not affect
neural progenitor cell (NPC) survival and proliferation,
higher minocycline concentrations (20 and 40 μg/ml) im-
paired NPC differentiation in culture [105].

Effective ways to improve graft survival following
subretinal transplantation
The studies cited above suggest several ways to mitigate
the immune response following transplantation. The most
important is to improve surgical skills and procedures to
maintain blood-retinal barrier integrity. Drugs such as glu-
cocorticoids, RV09, and minocycline that can inhibit pro-
liferation and activation of microglia are also beneficial. If
the blood-retinal barrier is ruptured during surgery, im-
munosuppressive drugs such as cyclosporine A may be
necessary. However, these agents should be used with cau-
tion. Skardelly et al. [106] found that even at the mini-
mum effective concentrations, all immunosuppressants
tested (cyclosporine A, everolimus, mycophenolic acid,
and prednisolone) reduced the proliferative capacity of
human NPCs, especially cyclosporine A and mycopheno-
lic acid, and altered their NAD(P)H-dependent metabolic
activity. Moreover, mycophenolic acid treatment induced
apoptotic death. Alternatively, cell death rate, neurogen-
esis, gliogenesis, and cell migration were unaffected by
these agents. Rota et al. [107] suggested that transient
immunosuppression was sufficient for long-term survival
of human NPCs and engraftment. Wenkel et al. [27]
also found that the blood-retinal barrier was fully re-
formed 21 days after intravenous injection of sodium
iodate. Hence, to reduce the side effects of traditional
immunosuppressants, drugs can be withdrawn after a
month. Additionally, injection of grafts combined with
chondroitinase ABC caused a dramatic increase in the
migration of Müller stem cells into all retinal cell layers
[77] and improved synapse formation of transplanted
photoreceptor precursors with host neurons [108]. This
may be explained by the repression of synaptogenesis
[109], stem cell migration, and integration into the
damaged retina by microglial deposition of chondroitin
sulfate proteoglycans. More specific immunosuppres-
sive strategies have also been developed to improve
graft survival. Pearl et al. [110] show that blocking
leukocyte co-stimulatory molecules, such as cytotoxic
T-lymphocyte-associated antigen 4 (CTLA4-Ig), anti-
CD40 ligand, and anti-lymphocyte function-associated
antigen 1, permitted long-term engraftment of allogen-
eic ESCs, mitigated xenogeneic immune rejection of
both undifferentiated and in vivo differentiated ESCs,
and prevented rejection following allogeneic and xeno-
geneic transplantation of iPSCs. Rong et al. [111] estab-
lished knock-in human ESCs constitutively expressing
CTLA4-Ig and PD-L1 before and after differentiation,
and showed that human ESC-derived allografts could
be implanted without the need for systemic immune
suppression.

Conclusion
Although both the SRS and stem cells have low im-
munogenicity, therapeutic stem cells in various states
of differentiation and delivered via different transplant-
ation protocols show distinctive survival, differenti-
ation, and migration capacities in the host. First, cell
survival after transplantation depends on technical
aspects of graft preparation, including the harvesting
technique, cell purity, and tissue storage methods.
Second, the state of the host also influences transplant
success, as better migration and integration of stem cells
have been observed when neural progenitors are trans-
planted into immature or injured retina [112–114]. The
anatomy of the retina also influences the survival of the
graft, so host species is important for experimental studies
and clinical translation. Appropriate surgical methods are
also paramount. Cells injected into the SRS migrate in the
retina better than cells injected into the vitreous cavity.
Anterior chamber paracentesis or vitrectomy can prevent
graft leakage and mitigate excessive intraocular pressure
during surgery. Chondroitinase ABC can be used to in-
crease the migration of stem cells into all retinal cell
layers. Postoperational treatment also influences graft
survival. As microglia are activated after transplant-
ation, anti-microglial drugs could be of great benefit.
When the blood-retinal barrier is broken, immunosup-
pressants are needed, at least until the barrier has re-
formed. These drugs should be withdrawn as early as
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possible, however, to mitigate suppressive effects of these
agents on cell survival, proliferation, and/or migration.
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