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Abstract

Background: Osteoarthritis (OA) is the most common joint disease worldwide. In the past decade, mesenchymal
stem cells (MSCs) have been used widely for the treatment of OA. A potential mechanism of MSC-based therapies
has been attributed to the paracrine secretion of trophic factors, in which exosomes may play a major role. In this
study, we aimed to compare the effectiveness of exosomes secreted by synovial membrane MSCs (SMMSC-Exos)
and exosomes secreted by induced pluripotent stem cell-derived MSCs (iIMSC-Exos) on the treatment of OA.

Methods: Induced pluripotent stem cell-derived MSCs and synovial membrane MSCs were characterized by flow
cytometry. iIMSC-Exos and SMMSC-Exos were isolated using an ultrafiltration method. Tunable resistive pulse-
sensing analysis, transmission electron microscopy, and western blots were used to identify exosomes. iIMSC-Exos
and SMMSC-Exos were injected intra-articularly in a mouse model of collagenase-induced OA and the efficacy of
exosome injections was assessed by macroscopic, histological, and immunohistochemistry analysis. We also
evaluated the effects of iIMSC-Exos and SMMSC-Exos on proliferation and migration of human chondrocytes by
cell-counting and scratch assays, respectively.

Results: The majority of iIMSC-Exos and SMMSC-Exos were approximately 50-150 nm in diameter and expressed
CD9, CD63, and TSG101. The injection of iIMSC-Exos and SMMSC-Exos both attenuated OA in the mouse OA model,
but iIMSC-Exos had a superior therapeutic effect compared with SMMSC-Exos. Similarly, chondrocyte migration and
proliferation were stimulated by both iIMSC-Exos and SMMSC-Exos, with iIMSC-Exos exerting a stronger effect.

Conclusions: The present study demonstrated that iIMSC-Exos have a greater therapeutic effect on OA than
SMMSC-Exos. Because autologous iMSCs are theoretically inexhaustible, iMSC-Exos may represent a novel
therapeutic approach for the treatment of OA.
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Background

Osteoarthritis (OA) is the most common joint disease
worldwide, affecting an estimated 10% of men and 18%
of women over 60 years of age, making it a major health-
care burden on society [1]. Because of the lack of blood
supply to articular cartilage and because chondrocytes
are highly differentiated cells with poor proliferative and
migration potential [2, 3], the treatment of OA has
always been problematic. Advances in stem cell trans-
plantation therapy have shown promise in treating OA.
In the past decade, mesenchymal stem cells (MSCs) such
as bone marrow-derived MSCs (BMSCs) [4-6] and
adipose-derived MSCs (AMSCs) [7, 8] have been used
widely for the treatment of OA. However, many disad-
vantages of stem cell transplantation therapy still remain
to be overcome, including the risk of tumor formation,
ethical concerns, and graft rejection, among others [9].
In addition, there are challenges associated with the proper
handling of stem cells and the optimal storage conditions
for maintaining cell viability and vitality. Consequently,
there is a need to develop new strategies to overcome the
disadvantages of cell transplantation therapy.

The efficacy of many MSC-based therapies has been
attributed to the paracrine secretion of trophic factors,
and exosomes may play a major role in mediating tissue
repair [10, 11]. Exosomes derived from different stem
cells have been demonstrated to facilitate tissue repair in
the skin [12], limbs [13], heart [14], and other tissues.
To our knowledge, however, the effect of MSC exosomes
on OA repair has not been investigated.

An important issue in developing MSC exosome ther-
apy for OA is determining the ideal cell type for exosome
isolation. Recently, researchers have demonstrated that
synovial membrane-derived MSCs (SMMSCs) can inhibit
OA progression [15, 16]. SMMSCs are particularly well
suited for cartilage repair because the synovium and cartil-
age originate from a common pool of cells during the
development of synovial joints [17, 18], suggesting that
SMMSCs are developmentally more closely related to
chondrocytes than to other MSCs. Moreover, SMMSCs
have been reported to more readily undergo chondrogene-
sis than BMSCs and AMSCs [19]. However, SMMSCs are
hard to obtain, and synovial membranes can only be
obtained through an invasive approach.

As an alternative source of stem cells, human induced
pluripotent stem cells (iPSCs) can be induced from
patient-specific adult somatic cells, and are similar to
embryonic stem cells (ESCs) in terms of morphology,
self-renewal, and differentiation capacity [20, 21]. Be-
cause they are patient specific, iPSC-derived MSCs
(iMSCs) can theoretically eliminate the need for im-
munosuppression in the recipient. Autologous iMSCs
could therefore be considered an inexhaustible source of
MSCs that could be used to meet as yet unmet clinical
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needs. Moreover, when compared with adult MSCs, hu-
man iMSCs have been demonstrated to be superior with
regard to cell proliferation, immunomodulation, cytokine
profile, generation of exosomes capable of modulating
the microenvironment, and bioactive paracrine factor
secretion [22]. To our knowledge, however, whether exo-
somes secreted by synovial membrane MSCs (SMMSC-
Exos) or exosomes secreted by induced pluripotent stem
cell-derived MSCs (iMSC-Exos) are better for the treat-
ment of OA has not yet been reported.

In this study, we aimed to compare the effectiveness of
exosomes isolated from either SMMSCs (SMMSC-Exos)
or iMSCs (iMSC-Exos) on the treatment of OA. We
found that iMSC-Exos had a superior therapeutic effect
compared with SMMSC-Exos in a mouse model of
collagenase-induced OA. Further in-vitro studies dem-
onstrated that iMSC-Exos were more effective in stimu-
lating chondrocyte migration and proliferation than
SMMSC-Exos. Our results suggest the possible thera-
peutic use of exosomes as a novel treatment for OA.

Methods

Derivation of iMSCs

The derivation of iMSCs was described in our previous
studies [12, 13]. Briefly, one iPSC cell line, iPSCs-(C1P33),
which was provided by the South China Institute for Stem
Cell Biology and Regenerative Medicine Group of the
Chinese Academy of Sciences in agreement with Professor
Pei [23], was used to generate MSCs. After 5 days in
culture, the medium was replaced by Dulbecco’s Modified
Eagle Medium (DMEM) containing 10% fetal bovine
serum (FBS), 2 mM L-glutamine, 1% penicillin/strepto-
mycin (P/S), and 0.1 mM nonessential amino acids (all
supplements from Gibco, Grand Island, NY, USA). Cells
were passaged upon reaching approximately 80% conflu-
ence. After cells developed a homogeneous fibroblastic
morphology, they were frozen at —80 °C for downstream
experiments.

Derivation of SMMSCs

The Ethics Committee of Shanghai Jiao Tong University
Affiliated Sixth People’s Hospital approved the use of
SMMSCs (Approval Number: YS-2016-063). Written
informed consent was obtained from all donors. The
SMMSC preparation method was described previously
[24, 25]. In brief, synovium was harvested from three
donors (two males/one female, age range 22-28 years)
during anterior cruciate ligament (ACL) reconstruction
surgery for acute ACL injuries. The harvested synovial
membrane specimens were kept in high-glucose DMEM
at 4 °C. Within 1 h, the specimen was rinsed with
phosphate-buffered saline (PBS), finely minced, and
digested with 0.2% collagenase I (Sigma—Aldrich, Saint
Louis, MO, USA) in high-glucose DMEM containing
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10% FBS and 1% P/S. After overnight incubation at 37 °C,
the released cells were centrifuged, washed, resuspended
in expansion medium (high-glucose DMEM supple-
mented with 10% FBS and 1% P/S), and plated in a T25
culture flask. The medium was changed after 4 days, and
nonadherent cells were removed by thorough washing
with PBS.

Characterization of iMSCs and SMMSCs

Surface antigens of iMSCs and SMMSCs were analyzed
by flow cytometry. Cells were harvested and incubated
for 30 min with 3% bovine serum albumin (Gibco) in
PBS to block nonspecific antigen binding. The iMSCs
were then incubated with monoclonal antibodies against
CD29, CD34, CD44, CD45, CD73 CD90, or HLA-DR;
SMMSCs were incubated with monoclonal antibodies
against CD34, CD44, CD45, CD73, CD90, CD166, or
HLA-DR (all antibodies from BD Biosciences, Sparks
Glencoe, MD, USA). The cells were then washed to re-
move unbound antibody. Surface antigens were analyzed
using the Guava easyCyte™ flow cytometer (Millipore,
Billerica, MA, USA).

Isolation and identification of iMSC-Exos and SMMSC-Exos
iMSC-Exos and SMMSC-Exos were isolated and purified
following our established protocol [13, 26]. After reaching
80% confluency, MSCs were washed with PBS and the
culture medium was replaced with MesenGro hMSC
medium (StemRD, San Francisco, CA, USA). The cells
were then cultured for an additional 48 h at 37 °C in 5%
CO,. The conditioned medium was collected and centri-
fuged at 300 xg for 10 min and then at 1500 x g for
10 min at 4 °C. After centrifugation, the supernatant was
filtered using a 0.22-pm filter (Steritop™; Millipore) to re-
move the remaining cells and cellular debris. The su-
pernatant was then transferred to an Ultra-clear tube
(Millipore) and centrifuged at 4000 x g until the volume in
the upper compartment was reduced to approximately
200 pl. The ultrafiltration liquid was resuspended in PBS
and re-ultrafiltrated at 4000 x g to 200 pl. This step was
then repeated once. Exosomes were stored in aliquots
at —80 °C or used for other downstream experiments.

The concentration and size distribution of iMSC-Exos
and SMMSC-Exos were measured using tunable resistive
pulse sensing (TRPS) analysis by qNano (Izon Science,
Cambridge, MA, USA). Aliquots of iMSC-Exos, SMMSC-
Exos, or calibration particles (CPC100 particles; Izon
Science) were placed in the Nanopore (NP150, A37355;
Izon Science) at 47.0-mm stretch with a voltage of 0.6 V.
Izon Control Suite software v2.2 (Izon Science) was used
for data analysis. Exosome morphologies were observed
using an FEI Tecnai G2 spirit transmission electron
microscope (TEM; FEI, Eindhoven, the Netherlands).
Antibodies against CD9 (1:1000; Abcam, Cambridge, UK),
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CD63 (1:1000; Abcam), and TSG101 (1:1000; Santa
Cruz, Dallas, TX, USA) proteins were used to analyze
the incorporation of each protein into exosomes in
western blots.

Collagenase-induced OA model

All procedures were approved by the Animal Research
Committee of Shanghai Jiao Tong University Affiliated
Sixth People’s Hospital (Approval Number: SYXK2011-
0128). Six-week-old female C57B/L10 mice were ran-
domized into four groups: normal (n=15), iMSC-Exos
treatment (n = 10), SMMSC-Exos treatment (# = 10), and
OA (n=10). On day 0, collagenase was used to induce
OA in all mice in the iMSC-Exos, SMMSC-Exos, and
OA treatment groups. The collagenase-induced model
of OA was described previously [27, 28]. Mice were
anesthetized by intraperitoneal injection of 10 ml/kg 4%
chloral hydrate. The knee joints of the mice were
injected once intra-articularly through the patellar liga-
ment with 12 U of collagenase VII (Clostridium histolyti-
cum; Sigma—Aldrich) in 8 pl saline. In the normal group,
8 ul of saline without collagenase was injected into the
knee joints in the same way. On days 7, 14, and 21,
mice in the iMSC-Exos and SMMSC-Exos treatment
groups were injected intra-articularly with 8 pl iMSC-
Exos (1.0x10'/ml) or 8 pl SMMSC-Exos in PBS
(1.0 x 10*°/ml), respectively. Mice in the OA and nor-
mal groups were injected intra-articularly with 8 ul PBS
at each time point. On day 28, mice were euthanatized
for further analysis.

Macroscopic examination

After euthanasia, the surface of the proximal tibia was
exposed. The surrounding soft tissue including joint
capsule and meniscus was removed. The cartilage sur-
face was then fully exposed and examined macroscopic-
ally. The evaluation was performed by two blinded
investigators, and the score was based on the Inter-
national Cartilage Research Society (ICRS) for cartilage
repair [29].

Histology

Mice tibias were fixed in 10% paraformaldehyde for
24 h and were then decalcified in 10% EDTA for
7 days at 37 °C. After serial dehydration, the tibial
bones were embedded in paraffin and sectioned cor-
onally through the tibial plateau at 5 pm thickness,
and then stained with hematoxylin and eosin (H&E)
and safranin O/fast green. Each specimen was scored
for the medial tibial plateau by two blinded ob-
servers using the Osteoarthritis Research Society
International (OARSI) cartilage OA histopathology
grading system to histologically grade the severity of
cartilage destruction [30].
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Immunohistochemistry analysis

Immunohistochemical (IHC) staining for type I and
II collagens was performed. All sections were de-
paraffinized, washed with PBS, treated for antigen
retrieval, and blocked with mouse IgG for 30 min.
Sections were incubated with primary antibodies
against mouse anti-collagen I (1:200; Abcam) and
mouse anti-collagen II (1:200; Abcam) overnight at
4 °C. Biotinylated secondary antibody and streptavi-
din peroxidase solution were then used to visualize
the sections.

Chondrocyte migration assay

Human cartilage was harvested after obtaining in-
formed consent from donors. Chondrocyte preparation
was described previously [25]. The scratch wound assay
was used to analyze the effect of iMSC-Exos and
SMMSC-Exos on migration of chondrocytes, as de-
scribed previously [13]. Briefly, 1.5x 10* cells were
seeded into 12-well plates and maintained at 37 °C for
8 h. Next, the confluent monolayer of cells was
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scratched using the tip of a P200 pipet tip. The medium
was removed and the cells were washed once with PBS.
The medium was then replaced with fresh DMEM F-12
medium containing 10%/ml iMSC-Exos, 10®/ml SMMSC-
Exos, or control medium. Wound closure was monitored
by collecting digital images at 0, 24, and 48 h after the
scratch using an inverted microscope (Leica, Wetzlar,
Germany). The images were obtained at the same
position before and after incubation. Scratched areas
were measured using Image-Pro Plus 6.0 software
(Media Cybernetics, Bethesda, MD, USA).

Chondrocyte proliferation assay

The effect of iMSC-Exos and SMMSC-Exos on the pro-
liferation of human chondrocytes was evaluated using
the Cell Counting Kit-8 (CCK-8; Dojindo, Kyushu Island,
Japan) as described previously [12, 13]. Chondrocytes
were seeded into 96-well plates at 2x 10° cells/well.
After 8 h, different doses of iMSC-Exos or SMMSC-
Exos were added to the wells. The medium was changed
daily for 5 days, using fresh DMEM F-12 medium

81.145%)

69.14%)

CD34

and HLA-DR

Fig. 1 Flow cytometric analyses of phenotypic markers of iMSCs and SMMSCs. a iMSCs were positive for CD29, CD44, CD73, and CD90 and were
negative for CD34, CD45, and HLA-DR. b SMMSCs were positive for CD44, CD73, CD90, and CD166 and were negative for CD34, CD45,

HLA-DR
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containing 10% FBS and the same exosome concentra-
tions. Cell proliferation curves were constructed by
measuring the amount of formazan dye generated by
cellular dehydrogenase activity with a microplate reader
at a wavelength of 450 nm.

Statistical analysis

The data were presented as means + standard devi-
ation. Comparisons of macroscopic and histological
scores as well as scratch wound assay results were
made using the Mann—Whitney U test. Comparisons
of chondrocyte proliferation assays were performed
using unpaired Students ¢ test. P<0.05 was consid-
ered statistically significant.

Results

Characterization of iMSCs and SMMSCs

iMSCs were successfully derived from iPSCs using our
modified one-step induction protocol. More than 90% of
iMSCs showed a homogeneous fibroblastic morphology
after cells were passaged through four or five propagations.
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After primary culture and throughout in-vitro expan-
sion, SMMSCs showed a robust proliferation capa-
bility and appeared to be a relatively homogeneous
population of spindle-shaped cells. The trilineage dif-
ferentiation capacity of SMMSCs was presented
in Additional file 1: Figure S1.

Flow cytometric analysis demonstrated that the major-
ity of iMSCs expressed CD29, CD44, CD73, and CD90
and were negative for CD34, CD45, and HLA-DR
(Fig. 1a). The majority of SMMSCs expressed CD44,
CD73, CD90, and CD166 and were negative for CD34,
CD45, and HLA-DR (Fig. 1b).

Characterization of iMSC-Exos and SMMSC-Exos

gNano analysis showed that the size of the majority of
iMSC-Exos and SMMSC-Exos was approximately 50—
150 nm (Fig. 2a). Transmission electron microscopy
clearly revealed that iMSC-Exos and SMMSC-Exos
exhibited a cup-shaped or round-shaped morphology with
a diameter of 50-200 nm (Fig. 2b). Western blotting ana-
lyses indicated that the iMSC-Exos and SMMSC-Exos
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Fig. 2 Characterization of iMSC-Exos and SMMSC-Exos. a TRPS measurement of exosome concentration and size distribution. b Morphology of
exosomes under transmission electron microscopy. ¢ Western blot analysis of exosome-specific CD9, CD63, and TSG101 proteins.
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expressed exosomal markers such as CD9, CD63, and
TSG101 proteins (Fig. 2c).

Macroscopic examination

The gross appearance of the tibial plateau was evaluated
in each group. The joint surface of the OA group
showed marked gross changes in OA, including cartilage
abrasion, subchondral bone exposure, and surface fibril-
lation (Fig. 3a). Analysis of the ICRS scores revealed no
significant differences among the normal, iMSC-Exos,
and SMMSC-Exos groups. However, these three groups
had significantly higher ICRS scores compared with the
OA group (Fig. 3b).

Histological analysis

Cartilage tissues from the medial tibial plateau in the nor-
mal group and the iMSC-Exos group presented typical
hyaline features with a smooth cartilage surface, regular

a

ICRS scores

Fig. 3 Macroscopic examination of tibial plateaus. a Representative
macroscopic images of the tibial plateau. Changes representative of
OA were observed only in the OA group. Black arrows, subchondral
bone exposure; asterisks, surface fibrillation. b Macroscopic ICRS scores
showed that the normal, iIMSC-Exos, and SMMSC-Exos groups had
significantly higher scores compared with the OA group. *P < 0.05. ICRS
International Cartilage Research Society, iMSC-Exos exosomes secreted
by induced pluripotent stem cell-derived mesenchymal stem cells, OA
osteoarthritis, SMMSC-Exos exosomes secreted by synovial membrane
mesenchymal stem cells
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cellular organization, and normal proteoglycan content
(Fig. 4a, left panels). However, the OA group showed typ-
ical degenerative OA changes including fibrillation of the
articular surface, proteoglycan depletion, osteophytic re-
modeling, and articular cartilage reduction (Fig. 4a, right
panel). Compared with the iMSC-Exos group, animals
treated with SMMSC-Exos showed moderate surface
irregularity and superficial fibrillation. In safranin O/fast
green sections (Fig. 4b), a reduction in safranin O staining
was also noted in the SMMSC-Exos group compared with
the iMSC-Exos group, which indicated a loss of proteogly-
can in cartilage in the SMMSC-Exos group. The OARSI
scores in the normal, iMSC-Exos, and SMMSC-Exos
groups were significantly lower than in the OA group
(Fig. 4c). The score of the iMSC-Exos group was signifi-
cantly lower than that of SMMSC-Exos group, but there
was no significant difference between the iMSC-Exos and
normal groups.

IHC analysis

IHC analysis of articular cartilage revealed that collagen
II staining in the normal, iMSC-Exos, and SMMSC-Exos
groups was more intense than in the OA group (Fig. 5a).
In the normal and iMSC-Exos groups, collagen II stain-
ing was localized primarily to the superficial and deep
zones of cartilage. In the SMMSC-Exos group, collagen
II expressed very weakly at the superficial zone com-
pared with the iMSC-Exos group. Collagen I staining of
cartilage was not observed in the normal, iMSC-Exos,
and SMMSC-Exos groups, but was present in the OA
group (Fig. 5b).

Chondrocyte migration and proliferation assays
Scratch wound assays indicated that both iMSC-Exos
and SMMSC-Exos significantly enhanced the motility of
chondrocytes (P <0.05) and further showed that iMSC-
Exos were more effective than SMMSC-Exos in increas-
ing motility at 24 and 48 h (P < 0.05; Fig. 6a, b).
iMSC-Exos and SMMSC-Exos stimulated chondrocyte
proliferation in a dose-dependent manner. At the con-
centration of 10° exosomes/ml, chondrocytes cultured
with either iMSC-Exos or SMMSC-Exos showed greater
proliferation compared with the control group or with
groups treated with 107 exosomes/ml, and iMSC-Exos
had a more potent effect on chondrocyte proliferation
than SMMSC-Exos. However, at a concentration of
107 exosomes/ml, there were no significant differences
among the iMSC-Exos, SMMSC-Exos, and control
groups (Fig. 6¢).

Discussion

In the present study, we compared for the first time the
effect of exosomes derived from iMSCs and SMMSCs
on the treatment of OA. The injection of either iMSC-
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a Normal

OARSI scores

Fig. 4 Histological analysis. a H&E staining. b Safranin O/fast green staining. H&E and safranin O/fast green staining showed that the
normal group and iMSC-Exos group presented typical hyaline features with a smooth cartilage surface, regular cellular organization, and
normal proteoglycan content. Compared with the iMSC-Exos group, the SMMSC-Exos group showed moderate surface irregularity, superficial fibrillation,
and a loss of proteoglycan (reddish-orange stain). € OARSI scores in the normal, iIMSC-Exos, and SMMSC-Exos groups were significantly lower than in the
OA group. The score of the iIMSC-Exos group was significantly lower than the SMMSC-Exos group, while there was no significant difference between the
iMSC-Exos group and the normal group. *P < 0.05. iMSC-Exos exosomes secreted by induced pluripotent stem cell-derived mesenchymal stem cells, OA
osteoarthritis, OARS/ Osteoarthritis Research Society International, SMMSC-Exos exosomes secreted by synovial membrane mesenchymal stem cells

Exos or SMMSC-Exos attenuated OA in a mouse
collagenase-induced OA model, but iMSC-Exos had a
superior therapeutic effect compared with SMMSC-
Exos. Furthermore, we demonstrated that while iMSC-
Exos and SMMSC-Exos both stimulated chondrocyte
migration and proliferation, iMSC-Exos had a greater
effect than SMMSC-Exos.

iPSCs and ESCs are pluripotent stem cells. iPSC-derived
and ESC-derived MSCs have been reported as promising
therapies for treating various tissue injuries like bone de-
fects, hepatic failure, and myocardial and limb ischemia
[22, 31, 32]. Recently, Gibson et al. [33] demonstrated that
BMP-2 and Wnt5a-pretreated ESC-derived MSCs could

promote rat chondral defect repair. Similar to direct MSC
transplantation therapy, our previous studies indicated that
iMSC-Exos also have the therapeutic effect of facilitating
cutaneous wound healing [12], attenuating limb ischemia
[13], and enhancing bone regeneration [34]. However, the
effect of iMSC-Exos on OA repair has not been reported in
the literature. In the present study, we found that injection
of iIMSC-Exos significantly attenuated OA in a mouse
model of collagenase-induced OA. Histological analysis
demonstrated that the repaired cartilage in the iMSC-Exos
group presented typical hyaline features similar to normal
cartilage. IHC analysis indicated that expression of collagen
11, a specific marker of hyaline cartilage, was similar in the
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exosomes secreted by synovial membrane mesenchymal stem cells

Fig. 5 IHC analysis. a Collagen Il staining. Staining of cartilage (brown coloration) in the normal, iIMSC-Exos, and SMMSC-Exos groups was stronger
than in the OA group. In the SMMSC-Exos group, collagen Il expressed very weakly at the superficial zone compared with the iIMSC-Exos group.
b Collagen I staining. Collagen | expression was not found in the cartilage of the normal, iIMSC-Exos, and SMMSC-Exos groups, but was present in
the OA group. iMSC-Exos exosomes secreted by induced pluripotent stem cell-derived mesenchymal stem cells, OA osteoarthritis, SMMSC-Exos

SMMSC-Exos

SoS—

iMSC-Exos and normal control groups. Further in-vitro
study showed that iMSC-Exos produced significant in-
creases in chondrocyte migration and proliferation.
SMMSCs are derived from the synovial membrane
and possess high self-renewal capacity [24]. Previous
studies demonstrated that the synovium and articular
cartilage develop from a common population of cells
during the development of synovial joints [17], so
SMMSCs are developmentally more closely related to
chondrocytes than other MSCs. SMMSCs were also re-
ported to have a greater capacity to stimulate chondro-
genesis than BMSCs and AMSCs, making them more
suitable for cartilage repair [19]. Recent studies have
highlighted the role of SMMSCs for the treatment of
OA, and one study reported that SMMSCs inhibited OA
progression in rats [16]. However, the effect of SMMSC-
Exos on OA repair has not been reported. The present
study demonstrated that the injection of SMMSC-
Exoscould significantly attenuate OA progression in a
mouse collagenase-induced OA model. However, IHC ana-
lysis showed only weak collagen II expression at the super-
ficial zone in the SMMSC-Exos group compared with
normal cartilage. Further in-vitro study indicated that, simi-
lar to iMSC-Exos, SMMSC-Exos could also significantly
stimulate chondrocyte migration and proliferation.

Using the same number of exosomes, iMSC-Exos
exerted a superior therapeutic effect compared with
SMMSC-Exos in the mouse OA model. Cartilage treated
by SMMSC-Exos showed moderate surface irregularity,
superficial fibrillation, loss of proteoglycan, and loss of
cartilage in the superficial zone, but none of these condi-
tions were observed when cartilage was treated with
iMSC-Exos. Furthermore, iMSC-Exos had a stronger ef-
fect than SMMSC-Exos on chondrocyte migration and
proliferation. In addition to these therapeutic advan-
tages, there are several features that make iMSCs worth
considering as a source of exosomes. First, the harvest-
ing of iMSCs can be performed noninvasively. iPSCs can
be induced from patient-specific adult somatic cells such
as peripheral blood cells, in contrast to the harvesting
procedure for SMMSCs from synovial membrane which
requires an invasive surgical procedure. Second, trans-
plantation of patient-specific iMSCs can theoretically
overcome potential problems related to ethical issues
and the need for immunosuppression in the recipient.
Third, autologous iMSCs may provide an inexhaustible
source of MSCs that could be used to meet unmet clin-
ical needs. Most importantly, iMSCs are emerging as a
strong contender for a new source of MSCs that would
be suitable to replace adult MSCs.
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Fig. 6 Effects of iMSC-Exos and SMMSC-Exos on migration and proliferation of chondrocytes. a Light microscopy images of scratch wound assays.
b Quantitative analysis of migration rates at 24 and 48 h. Scratch wound assays indicated that both iMSC-Exos and SMMSC-Exos significantly
enhanced the motility of chondrocytes and that iIMSC-Exos were more effective than SMMSC-Exos. ¢ iMSC-Exos and SMMSC-Exos stimulated
chondrocyte proliferation in a dose-dependent manner. At the concentration of 10° exosomes/ml, iIMSC-Exos showed a more powerful effect on
chondrocyte proliferation than did SMMSC-Exos. *P < 0.05. iMSC-Exos exosomes secreted by induced pluripotent stem cell-derived mesenchymal
stem cells, OARSI Osteoarthritis Research Society International, SMMSC-Exos exosomes secreted by synovial membrane mesenchymal stem cells
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Exosomes contain many regulatory signals such as
RNAs, microRNAs, and proteins, which may be a key
mechanism underlying their ability to alter cellular
signaling, reduce inflammation, and induce tissue repair
[35, 36]. Li et al. [37] reported that human umbilical
cord MSC-derived exosomes could attenuate burn-
induced inflammation mediated by miR-181c. Xin et al.
[38] demonstrated that BMSC-derived exosomes could
promote neural plasticity and functional recovery in a rat
stroke model via transfer of miR-133b. Zhang et al. [39]
showed that exosomal 14-3-3( protein from human um-
bilical cord MSCs plays an important role in cutaneous re-
generation. Although the precise mechanism of exosomes

in OA repair is still unclear, we speculate that one or more
components such as microRNAs or proteins may play a
crucial role. Future work will need to focus on the compo-
nents present in MSC exosomes which participate in OA
repair and their mechanism of action.

Conclusions

The present study demonstrated that iMSC-Exos had a
greater therapeutic effect than SMMSC-Exos in an
experimental mouse model of collagenase-induced OA.
Similarly, iMSC-Exos exerted a stronger stimulatory
effect on chondrocyte migration and proliferation than
did SMMSC-Exos. Because iMSCs can be obtained in a
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patient-specific manner and are theoretically inexhaust-
ible, iMSC-Exos may represent a novel therapeutic ap-
proach for the treatment of OA.

Additional file

Additional file 1: Is Figure S1. showing the trilineage differentiation
capacity of SMMSCs. (A) Alizarin Red staining for osteogenic
mineralization after 4 weeks in culture with osteogenic medium. (B) Oil
Red O staining for small lipid droplets after 3 weeks in culture with
adipogenic medium. (C) Alcian Blue staining for cartilaginous extracellular
matrix after 4 weeks in culture with chondrogenic medium. (TIF 9506 kb)
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