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transcription regulators for beta cell
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Abstract

Transcription factors regulate gene expression through binding to specific enhancer sequences. Pancreas/duodenum
homeobox protein 1 (PDX1), Neurogenin-3 (NEUROG3), and V-maf musculoaponeurotic fibrosarcoma oncogene
homolog A (MAFA) are transcription factors critical for beta cell development and maturation. NEUROG3 is expressed
in endocrine progenitor cells and controls islet differentiation and regeneration. PDX1 is essential for the development
of pancreatic exocrine and endocrine cells including beta cells. PDX1 also binds to the regulatory elements and
increases insulin gene transcription. Likewise, MAFA binds to the enhancer/promoter region of the insulin gene and
drives insulin expression in response to glucose. In addition to those natural roles in beta cell development and
maturation, ectopic expression of PDX1, NEUROG3, and/or MAFA has been successfully used to reprogram various cell
types into insulin-producing cells in vitro and in vivo, such as pancreatic exocrine cells, hepatocytes, and pluripotent
stem cells. Here, we review biological properties of PDX1, NEUROG3, and MAFA, and their applications and limitations
for beta cell regenerative approaches. The primary source literature for this review was acquired using a PubMed
search for articles published between 1990 and 2017. Search terms include diabetes, insulin, trans-differentiation, stem
cells, and regenerative medicine.
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Background
Type 1 diabetes mellitus (T1D) is an autoimmune-
mediated disease in which pancreatic beta cells are
destroyed by the immune system, thus causing life-long
dependence on exogenous insulin therapy [1]. This can
lead to hypoglycemic events, injection site complica-
tions, insulin resistance, and allergies along with several
other issues, while a subset of patients experience diffi-
culty in controlling fluctuations of blood glucose levels.
Islet transplantation has emerged as a promising treat-
ment option which helps the restoration of glycemic
control and protection from severe hypoglycemic events.
However, its widespread use has been limited due to in-
sufficient donor resources, transplant rejection, and the
necessity for lifelong immune suppression.

Transcription factors play critical roles in regulating gene
expression. Ectopic expression of selected transcription
factors can change, or trans-differentiate, the fate of som-
atic cells. This process is called cellular reprogramming.
Reprogramming nonbeta cells into insulin-producing cells
potentially offers novel regenerative approaches for T1D
therapy. There are several transcription factors involved in
early pancreatic progenitor formation, including pancreas/
duodenum homeobox protein 1 (PDX1), forkhead box A2
(FOXA2), and sex determining region Y-box 17 (SOX17).
Some transcription factors are critical for endocrine
lineage specification and differentiation, such as Neuro-
genin 3 (NEUROG3) and neurogenic differentiation 1
(NEUROD1). Late maturation of beta cells is shown to be
regulated by factors including V-maf musculoaponeurotic
fibrosarcoma oncogene homolog A (MAFA), V-maf mus-
culoaponeurotic fibrosarcoma oncogene homolog B
(MAFB), paired box gene 6 (PAX6), and estrogen-related
receptor gamma [2, 3]. Among these transcription factors,
PDX1, NEUROG3, and MAFA are the most extensively
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explored. They have been repeatedly reported to be able to
trans-differentiate various types of cells into insulin-
positive cells, including pancreatic exocrine cells, hepato-
cytes, intestine cells, gall bladder cells, and stem cells. Here,
we focus on these three key beta cell transcription factors
and assess their applications for trans-differentiation of
nonbeta cell types into insulin-producing cells.

Biological properties of PDX1, NEUROG3, and MAFA
PDX1
PDX1, also known as insulin promoter factor 1, is a
homeodomain transcription factor. PDX1 expression is
observed as early as embryonic day 8.5 (E8.5) at the 5–6
somite stages in mouse [4] and around gestational week
4 in human [5]. PDX1 is required for early embryonic
development of the pancreas, as in human study a case
report has shown a 5-year-old female Caucasian suffer-
ing from pancreatic agenesis because of a homozygous,
single nucleotide deletion within the PDX1 gene [6].
PDX1 is also required for the subsequent differentiation
of pancreatic lineages. When the expression of PDX1
from E11.5 (after the formation of normal pancreatic
epithelium and ductules) is blocked throughout the par-
turition in pregnant mice, the pancreatic development is
also arrested as evidenced by the undeveloped pancreatic
remnant consisting of only ducts but no acinar or beta
cells [7]. In mature beta cells, depletion and reduction of
PDX1 induces glucose intolerance, which suggests the
critical role of PDX1 in maintaining beta cell function
[7]. This notion is also supported by the identification of
maturity-onset diabetes of the young 4 (MODY4), one
type of diabetes caused by monogenic defects (heterozy-
gous) in the PDX1 gene. In nonobese diabetic (NOD)
mice and human T1D patients, PDX1 autoantibodies are
detected, suggesting PDX1 could be an autoantigen for
T1D [8]. In human type 2 diabetes mellitus (T2D),
PDX1 expression levels of islet beta cells are also com-
promised [9]. These data highlight the crucial roles of
PDX1 in early embryonic pancreatic formation, specifi-
cation of different endocrine lineages, and later matur-
ation of beta cell function.

NEUROG3
NEUROG3 is a member of the basic helix–loop–helix
transcription factor family involved in the central ner-
vous system and embryonic pancreas development. Dur-
ing the embryonic development of mouse pancreas,
expression of NEUROG3 is first observed in the dorsal
pancreatic epithelium at E9, increases between E9.5 and
E15.5, and then decreases to a very low level in neonatal
pancreas [10]. In human pancreatic development, the
expression is seen from week 8 and reaches its peak at
around week 11 [5]. NEUROG3 is regarded as the
proendocrine gene critical for pancreatic endocrine fates

since it does not coexpress with mature endocrine cell
hormones including insulin, glucagon, somatostatin, and
pancreatic polypeptide [11]. Forced expression of Neurog3
gene in pancreatic precursor cells in mouse embryos,
under the control of Pdx1 promoter, gives rise to endo-
crine cell differentiation, primarily alpha cells, and blocks
exocrine development. Conversely, in NEUROG3-deficient
mice, four islet cell types (alpha, beta, delta, and pancreatic
polypeptide cells) and endocrine precursor cells are not
generated, and neonates die postnatally from diabetes [11].
Intriguingly, Neurog3+/− heterozygous islets show no no-
table difference from Neurog3+/+ islets in expression of
PDX1, NKX6.1, GLUT2, MAFA, and MAFB on a per cell
basis [12], suggesting that as long as cells adopt an endo-
crine fate instead of an exocrine fate under NEUROG3
stimulation, a relatively low NEUROG3 level per cell does
not significantly affect beta cell differentiation.
Despite these observations, it remains unclear whether

NEUROG3 is absolutely required for beta cell develop-
ment in humans. In contrast to mouse studies, all re-
ported patients with biallelic mutations in NEUROG3
have functional endocrine cells capable of releasing C-
peptide despite severe enteric anendocrinosis from
childhood [13]. All of these cases indicate the presence
of insulin-secreting cells, and the reason for this is still
elusive. It is possible that these mutations are hypo-
morphic or null, given the fact that functionality tests
are mainly limited to their abilities to activate NEU-
ROD1. Nonetheless, it is evident that NEUROG3 is of
great importance for beta cell development and function
as all biallelic mutated patients present with permanent
diabetes, although the threshold level of NEUROG3 re-
quirement may be relatively low since all heterozygous
parents are not diabetic. In T1D db/db mice, the NEU-
ROG3 expression level is increased markedly [14]. In
contrast, in human T2D beta cells, no evidence shows
altered expression of NEUROG3 [9]. In NOD mice,
chronic pancreatic immune cell infiltration is correlated
with the emergence of NEUROG3-positive cells, indicat-
ing some extent of beta cell neogenesis under auto-
immune inflammation [15]. Similar to human T2D beta
cells, a human study shows no difference in the percent-
age of NEUROG3 cells (5–10%) in healthy and T1D hu-
man islets [16].

MAFA
MAFA, also known as RIPE3b1, is member of the MAF
family of basic leucine zipper. It is identified as a tran-
scription factor that specifically binds to a conserved in-
sulin enhancer element RIPE3b/C1-A2 and activates
insulin gene expression. In mice, MAFA is initially de-
tected at E13.5 only in insulin-producing cells, and ex-
presses exclusively in beta cells in the adult pancreas
[17]. Similar to rodents, nearly no MAFA is detected in
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human embryo until week 21, and the expression grad-
ually increases after birth [18]. The link between MAFA
expression and GSIS development, and, further, between
MAFA expression and the maturity of beta cells, is sup-
ported by studies in MAFA-deficient mice, which dem-
onstrate impaired GSIS, abnormal architecture of islets,
and overt diabetes by postnatal 50 weeks [19]. On the
contrary, glucose responsiveness can be acquired in P2
neonatal islets if the MAFA expression is induced by
adenoviral-mediated overexpression [20]. Human studies
have revealed that T2D islets display poorer GSIS prop-
erties than normal islets, which are accompanied by
compromised MAFA expression levels [9]. Additionally,
functional polymorphisms of MAFA were shown to as-
sociate with T1D in the NOD mouse model and patients
[21, 22]. For regenerative approaches, induction of
MAFA expression is also important to regenerate func-
tional and mature beta cells from pluripotent stem cells.
Physiologically driven induction of MAFA in hESCs is
shown to be beneficial in improving GSIS [23]. Also, ec-
topic expression of MAFA out of its normal develop-
mental context at PDX1-positive pancreatic progenitors
or NEUROG3-positive pancreatic endocrine progenitors
is detrimental for beta cell differentiation [24], highlight-
ing that the finely-tuned time window and expression
levels of MAFA are crucial for proper beta cell
maturation.

Interaction among PDX1, NEUROG3, and MAFA
In addition to their independent roles in beta cell deve-
lopment and maturation, PDX1, NEUROG3, and MAFA
are also mutually interacted/regulated during the pan-
creatic developmental process. Because of the limited
availability of human beta cells, the interaction among
the three factors is better understood in rodent models.
PDX1 regulates the expression of NEUROG3 [25]. Mice
with homozygous Pdx1 premature truncation mutation
in the C terminus, which is dispensable for pancreas
organogenesis, demonstrate a reduced number of
NEUROG3-positive cells from E13.5 to P1. Additionally,
transcript levels of Neurog3 as well as other transcription
factors regulating Neurog3 gene expression, including
Sox9, Hnf6, Hnf1b, and Foxa2, decrease in Pdx1 mutated
mice, suggesting that PDX1 regulates NEUROG3 dir-
ectly but not solely through its role in the formation of
pancreatic progenitor cells. PDX1 also regulates the ex-
pression of MAFA [26], since Mafa gene expression in
Pdx1 knockout mice is downregulated in islets com-
pared with wildtype mice. NEUROG3 appears to have
minimal effects on PDX1, as NEUROG3 disruption in
hESCs only marginally reduced PDX1-positive cells
compared with wildtype hESCs [27]. Other beta cell fac-
tors are also involved in the functional interactions be-
tween PDX1, NEUROG3, and MAFA. For instance,

PDX1 directly interacts with NEUROD1 and forms a
transcriptional activation complex on the insulin pro-
moter [28]. In collaboration with NKX2.2, a downstream
transcription factor of NEUROG3 [29], and FOXA2, a
key marker gene for definitive endoderm cells, PDX1
regulates beta cell-specific MAFA expression through
binding to the MAFA enhancer region [30]. MAFA and
related MAFB proteins also regulate beta-cell-enriched
PDX1 expression through binding to the Area II control
region that contributes to PDX1 transcription in vivo
[31] (Fig. 1).

PDX1, NEUROG3, and/or MAFA facilitate trans-
differentiation of nonbeta cells into insulin-
producing cells
Direct reprogramming to insulin-producing cells by
ectopic expression of PDX1, NEUROG3, and/or MAFA
Reprogramming adult somatic cells into therapeutic cell
types is an attractive approach for novel cell-based the-
rapies for degenerative diseases. Recently, transcription
factor-mediated “reprogramming”, or “trans-differenti-
ation”, approaches have been used to regenerate beta-like
cells or insulin-producing cells from nonbeta cell sources
in vitro and in vivo. Notably, studies have demonstrated
that overexpression of combinations of the three tran-
scription factors, PDX1, NEUROG3, and/or MAFA, can
reprogram the fate of various nonbeta cell types into
insulin-producing cells. In the following paragraphs, we
will summarize the progress of this unique approach.

Background of trans-differentiation by single or dual beta
cell factors
One of the first proof-of-concept studies was performed
by Ferber et al., which demonstrates PDX1-mediated in-
duction of insulin genes in the liver and amelioration of
drug-induced hyperglycemia in diabetic mice upon hep-
atic PDX1 overexpression by an adenoviral vector [32].
NEUROG3 also displays efficacy in trans-differentiating
hepatic cells into insulin-secreting cells which show a
rapid but not sustained diabetes-reversal effect [33].
Subsequent studies attempted to further improve hepatic
trans-differentiation by evaluating dual or more beta cell
factors. In a study aiming to test different combinations
of transcription factors for islet cell differentiation in the
liver, PDX1 + NEUROD1, NEUROD1 +MAFA, and
NEUROG3 +MAFA all demonstrated insulin gene acti-
vation, while the highest gene enrichment was gained by
the combinatorial expression of all three factors. Con-
sistently, NEUROG3 alone or NEUROG3 +MAFA can
convert acinar cells to delta-like and alpha-like cells re-
spectively, while only PDX1 +NEUROG3 +MAFA
works synergistically to regenerate cells with beta cell
features [34].
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Trans-differentiation of exocrine cells by PDX1, NEUROG3,
and MAFA
Screenings of different combinations of critical tran-
scription factors expressed in beta cells or their precur-
sors in vivo, including NKX2.2, NKX6.1, PAX4, PAX6,
NEUROG3, NEUROD1, PDX1, ISL1, and MAFA, have
identified the combination of PDX1, NEUROG3, and
MAFA (PNM) as a critical reprogramming factor to
trans-differentiate pancreatic exocrine cells into insulin-
producing beta-like cells [35]. Overexpression of PNM
by adenoviral vectors is necessary and sufficient to
trans-differentiate pancreatic exocrine cells into beta-like
cells both morphologically and functionally, although de-
rived beta-like cells do not form islet-like structures.
Similar results have been reported in human exocrine
pancreas reprogrammed by PNM plus PAX4 [36].

PNM-mediated trans-differentiation of liver cells and
other adult cell types
In addition to adult pancreatic exocrine cells, other adult
cell types are also utilized for beta cell regeneration.
Plasmid-based PNM gene delivery into the inferior vena
cava segment has facilitated transient induction of insu-
lin transcripts in rat livers [37]. Upon systemic adminis-
tration of a single adenoviral vector encoding PNM
factors in immunocompromised mice, Banga et al. dem-
onstrated that duct-like SOX9-positive cells in the liver
are directly reprogrammed into insulin-producing cells
[38]. Notably, those insulin-producing duct cells have
displayed some extent of glucose responsiveness ex vivo
and the capacity of reversing experimental hypergly-
cemia in vivo. In immunocompetent mice, adenoviral
vector-mediated PNM delivery has facilitated transiently

Fig. 1 a Summary of primary endocrine function and expression patterns of PDX1, NEUROG3, and MAFA during mouse and human embryonic
development. b Schematic of interaction of PDX1, NEUROG3, and MAFA in the activation of mouse insulin promoter. E1–E13 mouse embryonic
day 1 to day 13, P1–P7 mouse postnatal day 1 to day 7, W0–W12 gestational week 1 to week 12, MAFA V-maf musculoaponeurotic fibrosarcoma
oncogene homolog A, NEUROG3 Neurogenin 3, PDX1 pancreas/duodenum homeobox protein 1

Zhu et al. Stem Cell Research & Therapy  (2017) 8:240 Page 4 of 7



induced insulin-producing SOX9-positive duct cells in the
liver [39]. However, the conversion is not considered
complete because induced insulin-producing cells are typ-
ically multihormone-positive and not glucose sensitive.
These observations clearly indicate the ability of the

PNM cocktail for beta cell regeneration from liver cells.
However, it does not rule out the contributions of gener-
ation of insulin-producing cells from nonliver cell types.
To address this, Chen et al. performed an in-vivo screen-
ing study of a wide spectrum of tissues and found that
duodenum and jejunum tissues are more “susceptible”
to the PNM-mediated trans-differentiation than other
tissues [40], although it is challenging to fully compare
the regenerative efficiency among different tissues, espe-
cially pancreatic exocrine, liver, and intestinal tissues, be-
cause various factors (e.g., stoichiometry, gene delivery,
and expression efficiency) can affect the regeneration ef-
ficiency. Although not fully functional, these neo-beta
cells from the intestine still appear to have several ad-
vantages including the lack of glucagon or multihormo-
nal expression and an abundance of cell sources [40].
Additionally, adenoviral-mediated PNM expression can
also trans-differentiate primary mouse gall bladder epi-
thelial cells into insulin-positive cells partially benefiting
from a common developmental origin between extrahe-
patic biliary tissue and ventral pancreas [41].

PNM-supported differentiation of pluripotent and adult
stem cells
Pluripotent stem cells, such as hESCs and induced pluripo-
tent stem cells (iPSCs), are characterized by pluripotency
and infinite propagation. Their successful differentiation
into insulin-producing progeny could provide unlimited
cell sources for islet regeneration. For translational pur-
poses, stem cells are a preferable cell source for beta cell
regeneration compared with somatic cells, as adult somatic
cell reprogramming appears to require developmentally
closely related cell types (e.g., pancreas, liver, and intestine)
for high reprogramming efficiency [40, 42]. Xu et al.
assessed the capacity of mouse ESCs for beta cell differen-
tiation upon overexpression of PNM and NEUROD1 at
different stages of guided differentiation and with various
combinations [43]. They demonstrated that coexpression
of PNM showed significantly higher induction of the insu-
lin gene when compared with two factors and a single fac-
tor strategy. Of note, when compared between PNM and
PN+NeuroD1, PN +NeuroD1 transduction activated Ins1
and Ins2 gene expression better. However, somatostatin
gene expression levels are much lower in PNM, suggesting
that PNM-induced cells may be more lineage specific.
The major impediments in utilizing hESCs are ethical

issues and immunological intolerance. Human iPSCs are
ideal cell sources for beta cell regeneration given that
they are similar to hESCs and free from ethic constraints

associated with the use of embryo-derived cells. Saxena
et al. have shown that human iPSC-derived pancreatic
progenitor cells can be differentiated into glucose-
sensitive beta-like cells using a synthetic lineage-control
network to express PNM in a dynamic way, mimicking
the intrinsic expressing timeline as introduced previously
[44]. This preprogrammed sequential differentiation sys-
tem is technically more advanced than simple PNM
overexpression. However, the ability of the differentiated
cells to rescue diabetes in an animal model remains to
be determined. Encouragingly, there are several on-
going/planning phase clinical trials testing the safety and
efficacy of stem-cell-derived cell products. A first in
human, phase I/II clinical trial is being conducted by
ViaCyte to test its stem-cell-derived pancreatic progeni-
tor cells in suitable T1D patients [45]. Meanwhile, the
Boston Autologous Islet Replacement Program (BAIRT)
is planning a clinical trial to transplant autologous iPSC-
derived beta-like cells into suitable candidates [46].
These clinical trials would provide important evidence
for translating beta cell regeneration discoveries into
cures for diabetes.
Based on the critical roles of PNM for beta cell develop-

ment and function, pharmacological approaches to induce
endogenous PNM genes, an alternative to exogenous gen-
etic manipulations, have been studied extensively in terms
of a therapeutic perspective. Growth factors/small mole-
cules such as retinoid acid, fibroblast growth factor 7 and
10, sonic hedgehog signaling inhibitors (e.g., Sant-1), and
protein kinase C signaling pathway activators (e.g., indo-
lactam V) can upregulate PDX1 expression [47]. TGF-β
type I receptor inhibitors (e.g., Alk5 inhibitor II), vesicular
monoamine transporter 2 inhibitor, reserpine, and tetrabe-
nazine can induce NEUROG3 expression [48]. MAFA
transcript levels can be induced by a formula including
AXL inhibitor (R428), N-acetyl cysteine, Alk5 inhibitor II,
and thyroid hormone [23]. The application of these
growth factors/small molecules has overcome several dis-
advantages of genetic modification, and provided a safe,
efficient, and scalable approach for beta cell regeneration.

Conclusion
Regenerative medicine has opened a new era for T1D
cell therapy approaches, which may have greater effect-
iveness, safety, and versatility over exogenous insulin
therapy. Key beta cell transcription factors, PDX1, NEU-
ROG3, and/or MAFA, have been studied extensively for
their roles in beta cell development and function, as well
as their potential applications for trans-differentiating
nonbeta cells into insulin-producing cells. However, it is
of note that the PNM gene combination generally does
not reprogram nonbeta cells into genuine beta cells, and
that successful reprogramming into insulin-producing
cells typically needs developmentally related cell types
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rather than unrelated types [42]. For successful clinical
applications of the exciting “trans-differentiation” con-
cept, we will likely require trans-differentiation into
genuine beta cells, which demonstrate appropriate glu-
cose and incretin responsiveness. We recently found that
introduction of PDX1 in definitive endoderm, NEU-
ROG3 in pancreatic endoderm, and MAFA in pancreatic
endocrine progenitor cells during a stepwise differenti-
ation process could accelerate regeneration of glucose-
responsive and incretin (GLP-1)-responsive beta cells
from human pluripotent stem cells in vitro (Zhu et al.,
manuscript in preparation). Further understanding of
the underlying mechanism in the PNM-mediated repro-
gramming and careful optimization of PNM introduc-
tion conditions, such as the timing, duration, expression
levels, and delivery strategies, would inform the rational
design of next-generation PNM-mediated therapy for
diabetes. Our iPSC differentiation system would provide
a novel in-vitro model system to characterize the opti-
mal timing, duration, level, and method of PNM intro-
duction for mature beta cell regeneration.
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