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Abstract

Recent studies have suggested that the regulation of endogenous neural stem cells (NSCs) or transplanting of
exogenous nerve cells are the newest and most promising methods for the treatment of dementia and other
neurological diseases. The special location and limited number of endogenous NSCs, however, restrict their clinical
application. The success in directional differentiation of exogenous stem cells from other tissue sources into neural
cells has provided a novel source for NSCs. Study on the relative mechanisms is still at the preliminary stage.
Currently the induction methods include: 1) cell growth factor induction; 2) chemical induction; 3) combined
growth factor-chemical induction; or 4) other induction methods such as traumatic brain tissue homogenate, gene
transfection, traditional Chinese medicine, and coculture induction. Cerebrospinal fluid (CSF), as a natural medium
under physiological conditions, contains a variety of progrowth peptide factors that can promote the proliferation
and differentiation of mesenchymal stromal cells (MSCs) into neural cells through the corresponding receptors on
the cell surface. This suggests that CSF can not only nourish the nerve cells, but also become an effective and
suitable inducer to increase the yield of NSCs. However, some other studies believed that CSF contained certain
inhibitory components against the differentiation of primary stem cells into mature neural cells. Based on the above
background, here we review the relative literature on the influence of the CSF on stem cells in order to provide a
more comprehensive reference for the wide clinical application of NSCs in the future.
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Background

The clinical treatment of neurological diseases, especially
degenerative diseases of the nervous system, has always
proved very difficult. Only by symptomatic treatment can
we delay the progression of the disease as much as possible;
however, the treatment efficacy is generally dissatisfactory,
not to mention the hope of a complete cure. The reason
for this is that once the nerve cells are damaged and degen-
erated they cannot self-repair. Can neurological function
loss caused by neurological diseases be improved or even
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cured by nerve regeneration or functional replacement by
neighboring nerves? The answer is positive. Research over
recent years has found that the nerves of patients with
neurological diseases have certain self-repair potential after
nervous system injury [1], and proliferative neural stem
cells (NSCs) can still be found in adult nervous tissues.
Therefore, the latest and most promising method to treat
neurological diseases is by artificial intervention and regula-
tion of endogenous NSCs, which can promote their prolif-
eration and differentiation, or by nerve cell transplantation
to promote the repair of central nervous system injury.
Because of the special location and limited number of
endogenous NSCs, their clinical application has been
restricted. Although embryonic (including umbilical cord)
stem cells are good source libraries of exogenous NSCs and
these have made great progress in animal models, their
clinical applications have been strictly restricted due to
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reproductive ethical problems [2]. Former president of the
United States, Mr. Bush, issued an injunction in 2001 to
prohibit the federal government from funding human
embryonic stem cell research. The recent trend of induced
pluripotent stem cell (iPSC) research no longer has this
reproductive ethics problem. However, since it introduces
some transcription factors into animal or human somatic
cells through gene transfection which leads to the direct
reconstruction of somatic cells into embryonic stem cell-
like pluripotent cells, the risk of carcinogenesis is higher
than in normal cells. In addition, it is technically demand-
ing and complicated in operation, which has restricted its
clinical application. The discovery of the pluripotency of
bone marrow-derived mesenchymal stromal cells (BM-
MSCs) and the success of directional differentiation of
nerve cells has provided a new source of NSCs [3]. The
study on the mechanism of BM-MSCs differentiating into
neural cells is still at a preliminary stage. At present, the
main induction methods include: 1) cell growth factor
induction by epidermal growth factor (EGF), basic fibro-
blast growth factor (bFGF), nerve growth factor (NGF), and
so forth [4]; 2) chemical induction by p-mercaptoethanol
(B-ME), dimethyl sulfoxide (DMSO), butylated hydroxyani-
sole (BHA), and so forth [5]; 3) growth factor and chemical
combined induction (Woodbury et al. [6] used B-ME,
DMSO, and bFGF combined induction while Kogler et al.
[7] utilized NGE, bFGE, DB-cAMDP, isobutylmethyl xanthine,
and RA for combined induction of BM-MSCs into nerve
cells in vitro); and 4) other methods such as traumatic brain
tissue homogenate [8], gene transfection [9], traditional
Chinese medicine (Baicalin, Salvia miltiorrhiza, and so
forth) [10], coculture, and conditioned growth medium
close to the physiological state. Cytokines are widely used
inducers due to their extensive function in neural nutrition,
antifree radicals, reducing calcium overload, and inhibiting
the expression of nitric oxide synthase. Among them, EGF
and bFGF are most representative as they are not only
strong polypeptide factors for promoting cell growth, but
also important mitogens which promote the proliferation
and differentiation of BM-MSCs through corresponding
receptors on the cell surface [11]. However, these are all
exogenous substances that more or less impose certain
risks. It has been one of the goals of stem cell researchers
to find inducers that are close to the microenvironment of
the human body, preferably the human body’s own secre-
tion. Cerebrospinal fluid (CSF), as a natural medium at the
physiological state, is the best candidate [12]. CSF is mainly
secreted by the lateral ventricle choroid plexus epithelial
cells. It is a colorless and transparent liquid that contains a
variety of electrolytes, proteins, sugars, and various growth
factors such as the brain-derived and gliocyte-derived
neurotrophic factors [13]. These factors in CSF can pro-
mote the proliferation and differentiation of MSCs into
nerve cells through the corresponding receptors on the cell
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surface, suggesting that the differentiation of MSCs is
tissue-specific and that the tissue microenvironment can
induce its directional differentiation [14]. This indicates that
CSF can not only nourish the nerve cells, but can also act
as an effective and suitable inducer thus providing a new
source of NSCs [15]. On the other hand, some studies have
suggested that the inhibitory components in CSF might
suppress the differentiation of related primary stem cells
into mature nerve cells [16]. Based on the above informa-
tion, here we review the reported effects of CSF on stem
cells in the worldwide literature in order to provide refer-
ences for the future clinical application of NSCs.

Effects of CSF on MSCs
Yan and colleagues reported that BM-MSCs displayed
neuronal morphology 4-5 days after autologous CSF in-
duction, differentiated into neurons, astrocytes, and oligo-
dendrocytes, and exhibited corresponding characteristic
structure and biological features [17]. Our group had simi-
lar observations in our previous studies, and the same effect
was also observed in umbilical cord blood mesenchymal
stromal cells (UCB-MSCs) [3, 12, 18—25]. Farivar et al. [26]
also confirmed that CSF could induce the differentiation of
UCB-MSCs into neuronal cells, although the concentration
of CSF used for the induction and the time needed for
differentiation was slightly different. These studies sug-
gested that MSCs can grow in CSF and maintain their
potential of differentiation into neural cells. Shen et al. [27]
also showed that the growth characteristics of MSC in CSF
and in general medium were similar. As we have shown,
the number of various hemocytes in the suspension
decreases during the rapid growth of MSCs suggesting sup-
pressed proliferation or differentiation of hematopoietic
stem cells and suggesting that CSF favors the growth of
MSCs over hematopoietic stem cells which contributes to
the isolation and culture of MSCs from bone marrow or
umbilical cord blood. However, attention should be paid to
the protocols for CSF culture and induction because of the
potential of MSCs to differentiate into different tissue cells
in different culture media. Therefore, different culture media
formulae are needed based on the purpose of the culture.
The mechanism of CSF-induced differentiation of MSCs
into nerve cells is rarely discussed, but it is theoretically
proposed that the microenvironment within the brain or
the spinal cord provides the necessary conditions for the
induced directional differentiation of MSCs, although the
specific functioning elements are still unknown. Recently
Zhu et al. [28] identified that CSF regulated the prolifera-
tion and migration of stem cells through insulin-like
growth factor 1 (IGF-1), while Glage et al. [29] suggested
that glucagon-like peptide 1 (GLP-1) might be an import-
ant regulator for this process. Some researchers [30-33]
believe that it is the result of the direct interaction be-
tween the choroid plexus cells and MSCs in CSE, or the
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fusion of these two types of cells. Other scholars [34, 35]
proposed that the microecological signals of choroid
plexus cells might be an important factor regulating the
differentiation and migration of stem cells, and that
PRDM16 might be an important regulator in this signaling
pathway [35]. In addition, a study [36] found that the CSF
of amyotrophic lateral sclerosis patients could also pro-
mote MSCs to differentiate into neuron-like cells.
Currently, the study of the influence of the CSF on MSCs
is not limited to induction experiments—there have been
reports on the use of nerve cells obtained from induced
MSC:s in clinical treatment and which have shown certain
effects [3, 18, 20, 25, 37].

Effects of CSF on embryonic stem cells (ESCs)

Bian et al. [38] induced the differentiation of human em-
bryonic stem cells (hESCs) into neuron-like cells (such
as neurons, astrocytes, and oligodendrocytes) using
healthy human CSF, but the proportion of each cell type
was different. The proportion of glial cells was higher,
likely because CSF contains more factors that preferably
induce the differentiation of stem cells into glial cells.
Chen et al. [39] used bloody CSF to induce ESCs and
obtained a higher proportion of glial cells which might
be related to the increase of stimulating factors for glial
cell proliferation in CSF after traumatic brain injury.
During the study of migration and differentiation of
human fetal brain NSCs in developmental CSF, Yin et al.
[40] found that in the embryo there were large differ-
ences in the information substances secreted by ESCs at
different developmental stages, which in turn affected
the components of the CSF since the blood-brain barrier
was not yet formed and the brain was therefore in an
open state. Furthermore, the different active constituents
in the CSF could also affect the development and differ-
entiation of ESCs. This further confirmed that the
production of glial cells may be closely related to the
specifics of the CSF environment.

Unlike the above research on obtaining glial cells from
induced ESCs, Xu et al. [41] used certain concentrations
of ascorbic acid to induce the differentiation of ESCs,
and then adult CSF was used instead to induce the
directional differentiation of embryonic brain stem cells
into dopaminergic neurons. Zappaterra et al. [42] identi-
fied the CSF fluid pressure to be an important contribut-
ing factor to the differentiation and migration of ESCs,
while Martin et al. [43] proposed FGF2 to be an import-
ant factor in CSF-induced ESC differentiation. Through
genetic analysis, factors in CSF have been confirmed to
greatly influence the early embryonic development
process, especially the differentiation and formation of
nerve cells [44]. Kiiski et al. [45] found that the CSF
from healthy people promoted the differentiation of
hESCs into neurocytes and the formation of a neural
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network with spontaneous activity. However, another
study suggested that adult CSF did not support neuro-
genesis of ESCs [46]. There have been other reports that
CSF suppressed the differentiation of ESCs into neurons
but promoted their differentiation into glial cells [47].
The inconsistency of these results might be due to the
different sources of ESCs and CSF used in the studies.

Effect of CSF on NSCs

Li [48] found that after spinal cord injury the changes in
the CSF components affected the proliferation and dif-
ferentiation of endogenous NSCs in the spinal cord.
Another comparison study [49] found that: 1) NSCs can
survive, proliferate, and differentiate in the bloody CSF
and hydrocephalus clear CSF; 2) the adherent differenti-
ation of NSCs in the traumatic bloody CSF was faster
than that in the hydrocephalus clear CSF, and the
proportion of adherent differentiation was also higher;
and 3) there was difference in the cell types of NSC
differentiation in traumatic bloody CSF and hydroceph-
alus clear CSF. NSCs were prone to differentiate into
glial cells in traumatic bloody CSF and into neurons in
hydrocephalus clear CSF. Teng et al. [50] discovered that
the CSF of ischemic rats could promote the survival of
NSCs in vitro and induced the differentiation of NSCs
into neurons and astrocytes. Nozaki et al. [51] studied
the CSF of patients with subarachnoid hemorrhage and
identified bloody CSF to be an effective stimulant to
activate and promote the proliferation and differenti-
ation of endogenous NSCs. Haines et al. [52] reported
that the CSF of multiple sclerosis patients induced tran-
scriptional changes in oligodendrocyte progenitor cells
of the NSCs. The above research suggested that CSF
under morbid conditions might be an important factor
to initiate patient’s self-endogenous nerve repair [53, 54]
but that during the repair there was a difference in the
differentiation direction of NSCs [55]. In most cases
NSCs mainly differentiate into glial cells [15] and less
frequently predominantly into neuron-like cells [56].
Thus a current research hotspot in treating neurological
diseases with induced endogenous stem cells is how to
obtain the desired cells for clinical treatment, currently
drug-containing CSF, and especially traditional Chinese
medicine CSF pharmacology [57]. Our research group is
currently exploring the treatment of dementia using the
transplantation of EGb761 CSF pharmacology-mediated
circulating stem cells.

Conclusions: Problems and prospects

Currently, a growing number of studies (Table 1) have
suggested that the CSF-stem cell interaction is a poten-
tial for the treatment of neurological diseases [16]. This
is because CSF not only provides the microenvironment
for stem cell growth [13] and acts as the regulator for
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stem cell differentiation [58], but it also conducts cell
signals to stimulate self-healing [59]. However, in the
absence of unified and/or preferential stem cell culture
and identification methods, and specifications and/or
guidelines for stem cell transplantation approaches, con-
ditions and time windows, there will inevitably be some
negative reports and exaggerated propaganda, such as
the controversial “stem cell tourism” [60]. What should
we do in the face of this embarrassment? Sometimes it
might be “better to leap before looking” [61]. As Nobel
Prize winner Martin Evans said during his interview with
Life Times, the key point of stem cell research is to apply
experimental results to clinical practice. Based on previous
experiences [3, 18], we propose that the synchronous
treatment and acquisition of CSF through CSF circulating
transplantation broke the boundary between stem cell
induction and treatment, and circumvented the limitation
of transplantation routes including stereotactic injection,
operation injection, and intravenous infusion. It is an
effective and clinically feasible individualized stem cell
transplantation treatment mode. However, this is based on
only small-scale clinical research. Further multicenter and
large-scale randomized control trials are needed to solve
the following major questions: 1) What is the specific sub-
stance(s) in CSF that induces the differentiation of stem
cells? 2) What is the proportion of target cells derived
from CSF-induced differentiation, and how to increase
this proportion? 3) Why are there were differences in
obtaining functional stem cells from different sources of
mesenchymal stromal cells [62, 63]? 4) How do we pre-
vent stem cells senescence and maintain multiple attri-
butes [64—66]? 5) How many stem cells should be used
for transplantation? 6) How do we control the prolifera-
tion, differentiation, migration, and tumorigenesis of the
stem cells after implantation into the nervous system? 7)
Why are there are no standard guidelines for the indica-
tions, routes, and timing of transplantation, or the evalu-
ation criteria of treatment results? In this regard, we agree
with the opinion of responsible professionals and experts
that basic research and applied basic research of CSF-in-
duced stem cells should be encouraged, while standardized
clinical research of a scientific nature can be performed in
those hospitals with appropriate facilities. Without con-
firmed results from relevant research, CSF-induced stem
cells are currently not recommended for large-scale clinical
application, and for-profit marketing and exaggerated com-
mercialized propaganda should be prohibited.
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