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chondrogenesis of mesenchymal stem cells
via regulation of autophagy
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Abstract

Background: Low-intensity pulsed ultrasound (LIPUS) can induce mesenchymal stem cell (MSC) differentiation,
although the mechanism of its potential effects on chondrogenic differentiation is unknown. Since autophagy is
known to regulate the differentiation of MSCs, the aim of our study was to determine whether LIPUS induced
chondrogenesis via autophagy regulation.

Methods: MSCs were isolated from the rat bone marrow, cultured in either standard or chondrogenic medium, and
stimulated with 3 MHz of LIPUS given in 20% on-off cycles, with or without prior addition of an autophagy inhibitor or
agonist. Chondrogenesis was evaluated on the basis of aggrecan (AGG) organization and the amount of type Il collagen
(COL2) and the mRNA expression of AGG, COL2, and SRY-related high mobility group-box gene 9 (SOX9) genes.

Results: LIPUS promoted the chondrogenic differentiation of MSCs, as shown by the changes in the extracellular matrix
(ECM) proteins and upregulation of chondrogenic genes, and these effects were respectively augmented and inhibited
by the autophagy inhibitor and agonist.

Conclusions: Taken together, these results indicate that LIPUS promotes MSC chondrogenesis by inhibiting autophagy.
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Background

Articular cartilage injury is a common complication of
joint diseases like osteoarthritis. Due to its low innerv-
ation, poor blood supply, and low chondrocyte prolifera-
tion and migration, autologous cartilage repair capacity
is very limited and can lead to irreversible joint dysfunc-
tion after injury [1].

The current therapeutic strategies of alleviating articu-
lar cartilage injury have unsatisfactory clinical outcomes.
Although cartilage engineering can be a promising op-
tion [2], the poor regenerative capacity of chondrocytes
precludes their use as the seeding cells [3].

Mesenchymal stem cells (MSCs) are highly prolifera-
tive self-renewing cells with multi-lineage differentiation
ability and have become the most promising cell source
for cartilage regeneration. In fact, autologous MSCs
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implanted into regions of defective cartilage differenti-
ated into chondrocytes, indicating their potential for effi-
cient cartilage repair [4].

However, MSCs have an inherently limited capacity of
chondrogenesis, which in turn limits the therapeutic effi-
cacy and outcome of MSC transplantation [3, 5-7]. Dif-
ferentiation of MSCs into chondrocytes is influenced by
the extracellular microenvironment, as well as several
growth factors, primarily the transforming growth factor
(TGF) [8]. However, little is known regarding the regula-
tory mechanisms of chondrogenesis.

Autophagy is a catabolic process that enables cells to re-
cycle damaged proteins and organelles to ensure their sur-
vival during stress conditions [9, 10]. The autophagy-
related genes such as Beclinl and LC3 are essential for
autophagosome formation in the MSCs [11, 12]. Studies
show that autophagy plays an important role in MSC dif-
ferentiation and regulates its therapeutic effects in inflam-
matory diseases [13, 14]. However, it is unclear whether
autophagy also affects chondrogenesis of MSCs.
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In recent years, studies have shown that mechanical
stimulation affects the differentiation of MSCs [15, 16].
Low-intensity pulsed ultrasound (LIPUS) provides
mechanical stimulation in the form of acoustic waves
and has been used as an adjuvant physical therapy to
treat musculoskeletal injuries. Recent studies show that
LIPUS promotes cartilage repair, and stimulation of
chondrocytes with LIPUS increases production of extra-
cellular matrix (ECM) proteins like type II collagen
(COL2) and aggrecan (AGG) [17-19]. In addition,
LIPUS has been shown to facilitate TGF-fB-mediated
chondrogenesis of MSCs in vitro [20, 21]. These findings
strongly indicate the potential of LIPUS in regenerating
damaged cartilage via MSCs.

In this study therefore, we analyzed the effects of au-
tophagy regulation and LIPUS on MSC chondrogenesis
and found that LIPUS drives the chondrogenic differen-
tiation of MSCs by inhibiting autophagy.

Material and methods

MSC isolation and culture

Bone marrow-derived MSCs (BMSCs) were isolated
from 18 8-week-old male Sprague-Dawley (SD) rats as
previously described [22, 23]. The experimental proto-
col was in accordance with the US National Institutes
of Health’s Guidelines of Laboratory Animal Use and
approved by the Nanjing Medical University Ethics
Committee of Nanjing Hospital. Briefly, the bone
marrow was flushed out from the femur cavity with
low-glucose Dulbecco’s modified Eagle’s medium
(DMEM; KeyGEN, Nanjing, Jiangsu, China) contain-
ing 10% fetal bovine serum (FBS; KeyGEN). After
centrifuging the BM cell suspension for 10min at
1000 rpm, the fat and other debris were removed and
the remaining cells were washed twice with PBS. The
cells were re-suspended in DMEM and cultured in
petri dishes at 37°C under 5% CO,. After reaching
80-90% confluency, the cells were trypsinized and
re-seeded at the density of 2 x 10° cells per dish. The
MSCs were identified morphologically under a light
microscope [13].

Immuno-phenotypic characterization of MSC

The MSCs were obtained from each rat and identified
respectively. The primary MSCs were harvested using
0.25% trypsin (KeyGEN), washed twice in PBS, and cen-
trifuged at 400g for 5min at room temperature. After
re-suspending the cells in the staining buffer at the dens-
ity of 2x10%/ml, 100-ul aliquots were incubated with
FITC-conjugated rabbit anti-mouse CD90 and CD31
(Abcam, Cambridge, MA, USA) and unconjugated
anti-CD44 and anti-CD45 (Santa Cruz, Dallas, TX, USA)
for 15min at 4°C. The cells were washed once with
ice-cold staining buffer and re-suspended in the buffer
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containing FITC-conjugated goat anti-rabbit IgG
(Jackson, Philadelphia, Pennsylvania, USA) for 15 min at
4°C. After washing again with ice-cold PBS containing
2% bovine serum albumin (BSA), the cells were acquired
using a flow cytometer (FACS Calibur, BD Biosciences,
SanJose, CA, USA). FITC-conjugated mouse IgG1 (R&D
systems Inc., Minneapolis, MN, USA) was used as the
isotype control for CD90 and CD31, and rabbit poly-
clonal IgG (Epitomics, Burlingame, CA, USA) for CD44
and CD45. The acquired cells were analyzed using
WinMDI 2.8 software (The Scripps Institute, West
Lafayette, IN, USA).

Induction of chondrogenic differentiation

The MSCs were differentiated to chondrocytes in a
three-dimensional pellet culture system as previously de-
scribed [20, 24]. Briefly, the second generation MSCs
were harvested (approximately 2 x 10° cells) and pelleted
by centrifuging at 300g for 5 min. The undisturbed pellet
was cultured in chondrogenic medium (KeyGEN)—
DMEM containing 10% FBS, 50 units/mL penicillin, 50
mg/mL streptomycin, 0.1 uM hexadecadrol, 0.1 mM
Vitamin C, 50 pg/mL ascorbate 2-phosphate, 0.35 mM
proline, 1 mM pyruvate, 10 ng/ml TGF-$3, 50 mg/mL
ITS Premix, 6.25 pg/mL insulin, 6.25 ug/mL transferrin,
6.25 ug/mL sodium selenate, and 5.35ug/mL linoleic
acid—at 37 °C under 5% CO,. Control MSC pellets were
re-suspended in basic medium (DMEM with 10% FBS).
The culture medium was changed every 3 days until the
pellets were harvested. The MSCs were cultured in
chondrogenic medium for 10 days before analyses.

LIPUS stimulation and autophagy agonist and inhibitor
treatment

The tubes containing the differentiated MSCs were
placed on the transducer (HT2009-1, Ito Corporation,
Tokyo, Japan), and LIPUS waves of varying intensities
(20 mW/cm?, 30 mW/cm?, 40 mW/cm?, or 50 mW/cm?)
were transmitted through the bottom of the tube coated
with a coupling agent as previously described [20]. The
cells were treated once a day for 10 days at the on—off
ratio of 20%, and irradiated with 3 MHz for 20 min in a
humidified 37 °C incubator with 5% CO,. To determine
the role of autophagy on the chondrogenic effects of
LIPUS, the cells were incubated with the autophagy in-
hibitor 3-methyladenine (3-MA; Selleck, Houston, TX,
USA) or agonist rapamycin (Selleck) before the LIPUS
stimulation. During the LIPUS stimulation and the au-
tophagy agonist and inhibitor treatment, the medium
were changed every 3days. When the medium were
changed, the autophagy agonist and inhibitor were
re-added to the medium.
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Western blotting

Protein was extracted from the cells using a total protein
extraction kit (KeyGEN), and equal amounts of protein
(20-25 pg) per sample were loaded into sodium-dodecyl
sulfate polyacrylamide (SDS-PA) gels and resolved by
electrophoresis. After blotting the proteins onto nitrocel-
lulose membranes, the latter were blocked with skim
milk for 2h at room temperature and incubated over-
night with anti-Beclinl (1:1000; Cell Signaling Technol-
ogy, Danvers, MA, USA), anti-LC3 (1:1500; Novus
Biological, Littleton, Colorado, USA), and anti-B-actin
(1:1000; Cell Signaling Technology) antibodies at 4 °C.
The following day, the blots were washed thrice with
Tween-20 in PBS and incubated with peroxidase-conju-
gated goat anti-mouse secondary antibody (1:5000; Santa
Cruz, Dallas, TX, USA) at 37 °C for 2 h. After the final
three washes, the membranes were developed by ex-
posure to chemiluminescence reagents (ECL kit;
KeyGEN).

Electron microscopy

Harvested cells were washed in ice-cold PBS, fixed with
2% glutaraldehyde (Sigma-Aldrich, St. Louis, MO, USA),
and washed twice with PBS. Cells were post-fixed with
1% osmium tetroxide (Sigma-Aldrich), dehydrated, and
treated with propylene oxide (Sigma-Aldrich) before be-
ing embedded in epoxy resin (Sigma-Aldrich). The
blocks were cut into thin sections, stained with lead cit-
rate (Sigma-Aldrich), and observed under the electron
microscope (JEM-1011, JEOL, Akishima, Tokyo, Japan).

Immunofluorescence

The MSCs were seeded onto slides and cultured for 10
days. And then the MSCs were fixed with 4% paraformal-
dehyde for 30 min on ice, washed twice with PBS, and in-
cubated with 3% H,0O,-methanol solution at room
temperature for 10 min. Micromass pellets were washed
twice with PBS, fixed for 24-h in 10% formalin, embedded
in paraffin, and cut into 5-um thick sections. The latter
were deparaffinized, rehydrated, and then washed with
PBS. After a 5-min incubation with 0.5% Triton X-100
(KeyGEN), the cells/sections were blocked with 10% goat
serum in PBS for 30 min and incubated overnight with
anti-LC3B antibody (1:200; Novus Biological) at 4 °C. The
slides were washed thrice with the blocking solution, incu-
bated with fluorochrome-conjugated secondary antibody,
and counterstained with diamidine phenylindole (DAPL;
Molecular Probes, Waltham, MA, USA). The LC3 punc-
tae were observed and counted under a confocal micro-
scope (Dmi 6000-B, Leica, Brunswick, Germany) [25, 26].

Immunocytochemistry (ICC)
The pellets were washed twice with PBS, fixed for 24 h
in 10% formalin, embedded in paraffin, and cut into
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5-um thick sections. The pellet sections were incubated
with 3% H,O, in methanol at room temperature for 10
min to quench the endogenous peroxidase, washed
thrice with PBS, and blocked with goat serum at room
temperature for 20 min. The sections were then incu-
bated overnight with anti-COL2 antibody (1:200; Acris,
Herford, NRW, Germany) at 4°C, washed thrice with
PBS, and incubated with horseradish peroxidase
(HRP)-conjugated anti rabbit secondary antibody (50 pl;
Santa Cruz) at 37°C for 30 min. After washing thrice
with PBS, 3,3-diaminobenzidine (DAB) was added for
color development, and the sections were counterstained
with hematoxylin (KeyGEN). Three slides were observed
per condition, and positively stained cells were counted
in three randomly selected areas per slide.

Toluidine blue staining

To determine the presence of glycosaminoglycans, the
pellet sections were washed thrice with PBS, fixed with
4% paraformaldehyde at room temperature for 20 min,
and washed again. The slides were then stained with
toluidine blue for 30 min, washed with PBS, and ob-
served under an inverted microscope.

Quantitative real-time (qRT)-PCR

Total RNA was extracted from the micromass pellets
using TRIzol reagent (Invitrogen, Waltham, MA, USA)
according to the manufacturer’s instructions, and 1 pg
per sample was reverse-transcribed using a PrimeScript™
RT reagent Kit with gDNA Eraser (Takara Bio, Inc.,
Otsu, Shiga, Japan). The PCR primers (Table 1) targeting
glyceraldehyde 3-phosphate dehydrogenase (GAPDH),
COL2, AGG, and SRY-related high mobility group-box
gene 9 (SOX9) were designed based on cDNA sequences
from the NCBI Sequence database using Primer Express®
software, and primer specificity was confirmed using
BLASTN search. The qRT-PCR was performed using
SYBR® Green PCR Mix (Takara Bio, Inc.) on the ABI
Prism 7500 Fast Real-Time PCR System (Applied Biosys-
tems, Foster City, CA, USA). To quantify the relative

Table 1 Primer sequences for gRT-PCR

Gene Primer sequences

GAPDH Forward:5-GGGAAACCCATCACCATCTT-3"
Reverse:5-CCAGTAGACTCCACGACATACT-3'

coL2 Forward:5-CAAGGAGAAGCTGGACAGAAA-3'
Reverse:5-CTTAGGACCAGTCACTCCAGTA-3'

AGG Forward:5-TGAAGGCAACTCTCGTCTTATT-3'
Reverse:5-GTCAGGGTCGTAAGGGATTATG-3'

SOX9 Forward:5-GACGTGCAAGCTGGGAAAGT-3'

Reverse:5-CGGCAGGTATTGGTCAAACTC-3'

GAPDH glyceraldehyde 3-phosphate dehydrogenase, COL2 type Il collagen,
AGG aggrecan, SOX9 sex-determining region Y-box 9
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expression of each chondrogenic gene, Ct values were
normalized against the endogenous reference (ACt=
Ctearget — Ctgappn) and compared with a calibrator using
the 27" method (AACt = ACtsumpte — ACtcatibrator)-

Statistical analysis

All data were expressed as mean + standard deviation
(SD) of three independent experiments and analyzed
using SPSS 23.0 software (IBM Corp, Armonk, NY,
USA). Multiple groups were compared by single-factor
analysis of variance (ANOVA) and two groups by
pair-wise Student’s ¢ test. P values <0.05 were consid-
ered statistically significant.

Results

Characterization of MSCs

The MSCs appeared fusiform or triangular on day 10 of
culture (Fig. 1a). Inmuno-phenotyping showed that the
MSCs were positive for CD44 (60.10 + 3.73%) and CD90
(92.99 +7.33%) and negative for CD31 (1.66 + 0.83%)
and CD45 (4.12 + 0.88%) (Fig. 1a).

Effects of autophagy agonist and inhibitor on MSCs

The protein expression of autophagy-related gene
Beclinl and LC3 in MSCs was examined by western-blot
analysis after rapamycin or 3-MA treatment for 24 h.
Beclinl expression and ratio of LC3II/LC3I in MSCs sig-
nificantly increased (p <0.05) after treatment with 1, 5,
or 10 uM rapamycin, with the highest at 10 uM rapamy-
cin (p <0.05). Beclinl expression and ratio of LC3II/
LC3I in MSCs significantly decreased (p <0.05) after
treatment with 1, 5, or 10 uM 3-MA, with the lowest at
10uM 3-MA (p<0.05) (Fig. 1b). The autophagosome
formation in MSCs was observed by electron micros-
copy. The morphometric ultrastructural analyses showed
that autophagosomes were increased in rapamycin treat-
ment group compared with the control group and 3-MA
treatment group in MSCs (Fig. 1c). Immunofluorescence
staining also showed that LC3-positive cells were signifi-
cantly increased (p < 0.05) in rapamycin treatment group
compared with the control group and 3-MA treatment
group in MSCs (Fig. 1d).

LIPUS inhibits autophagy and promotes chondrogenesis
of MSCs

Stimulation with different intensities of LIPUS signifi-
cantly decreased Beclinl expression and LC3II/LC3I ra-
tio in the MSC pellets (p < 0.05; Fig. 2a). Ultrastructural
examination showed a significant decrease in the num-
ber of autophagosomes and LC3+ cells in MSCs under-
going chondrogenic differentiation following LIPUS
stimulation (p <0.05; Fig. 2b and c). The maximum
anti-autophagic effect was seen at the intensity of 50
mW/cm? intensity. To determine the effect of LIPUS on
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chondrogenesis, the ECM and chondrogenic markers
were analyzed. A significantly higher number of COL2+
cells were seen in the differentiating MSCs stimulated
with LIPUS (Fig. 3a), in addition to a greater density of
AGG (Fig. 3a), compared to the unstimulated MSCs.
Consistent with this, the COL2, AGG, and SOX9 genes
were also upregulated (p < 0.05) following LIPUS stimu-
lation (Fig. 3b-d). As with autophagy inhibition, the
maximum pro-chondrogenic effect was seen at the in-
tensity of 50 mW/cm?.

Autophagy inhibits MSC chondrogenesis

MSCs undergoing chondrogenic differentiation showed
elevated Beclinl expression and LC3II/LC3I ratio after
rapamycin treatment (p <0.05), which decreased signifi-
cantly when treated with 3-MA (p <0.05) (Fig. 4a). Simi-
larly, rapamycin and 3-MA respectively increased and
decreased the number of autophagosomes (Fig. 4b) and
LC3+ cells (Fig. 4c). Furthermore, autophagy induction by
rapamycin significantly decreased the in situ expression of
COL2 and AGG in the MSC pellets, whereas 3-MA-medi-
ated inhibition of autophagy had the opposite effects
(Fig. 5a). Consistent with this, COL2, AGG, and SOX9
mRNA levels were respectively decreased (p <0.05) and
increased (p < 0.05) after rapamycin and 3-MA treatment
(Fig. 5b—d). Taken together, autophagy has an inhibitory
effect on MSC chondrocyte differentiation.

LIPUS stimulates the chondrogenic differentiation of
MSCs by inhibiting autophagy

Consistent with results presented before, LIPUS stimula-
tion significantly decreased autophagy in the differentiat-
ing MSCs compared to the unstimulated cells in the
presence of rapamycin (p < 0.05 for all indices; Fig. 4a—c).
However, compared to the 3-MA-treated cells, the degree
of autophagy was still significantly higher in the
rapamycin-treated cells, even after LIPUS stimulation
(Fig. 4a—c). In addition, compared to the unstimulated
state, LIPUS stimulation also increased the chondrogenic
markers in the differentiating MSCs in the presence of
rapamycin. However, LIPUS-mediated chondrogenesis
was more pronounced following additional autophagy
inhibition by 3-MA compared to that after rapamycin
treatment (Fig. 5a-d). Taken together, LIPUS can en-
hance MSC differentiation into chondrocytes by inhi-
biting autophagy, although it cannot completely block
the autophagic pathway.

Discussion

The aim of this study was to determine the role of au-
tophagy in chondrogenesis of MSCs and whether LIPUS
affects chondrogenesis of MSCs via regulation of au-
tophagy. We found that autophagy activation suppressed
chondrogenesis of MSCs, but autophagy inhibition
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promoted chondrogenesis of MSCs. In addition, we
demonstrated that LIPUS promoted chondrogenesis of

MSCs via autophagy inhibition.

The lack of regenerative ability in chondrocytes and
the absence of nerves and vasculature in cartilage se-
verely limits articular cartilage repair after injury. Au-
tologous chondrocyte implantation (ACI) is a promising
therapeutic option for severe cartilage defects and has
shown satisfactory clinical outcome [27-29]. However,
the outcome of ACI is limited by insufficient number of
chondrocytes, the lack of specific niches within the ar-
ticular cartilage, and individual variability [30-32]. MSCs
can proliferate extensively ex vivo while maintaining
their multipotent differentiation abilities, making them
an ideal cell type for cell-based repair strategies [33, 34].
In addition, BMSCs are easily isolated and can differenti-
ate into various lineages, including the chondrocytes,

under optimal conditions [35].

The chondrogenic differentiation of MSCs is affected by
soluble biological factors, cell-cell interactions, and the
local microenvironment [36]. Several studies have demon-
strated in vitro chondrogenesis of MSCs in pellet culture
or on three-dimensional scaffolds in the presence of
TGE-B, accompanied by the synthesis of cartilage-specific
matrix proteins [37—41]. Consistent with these reports, we
found that the chondrogenesis-related genes COL2, AGG,

and SOX9 were upregulated in MSCs cultured in the
chondrogenic medium containing TGF-B and other sol-
uble factors.

Autophagy, a cellular degradation process that provides
energy and macromolecular building blocks, is essential
for cell survival and differentiation [42] and also plays an
important role in the differentiation and self-renewal of
stem cells [13, 14, 43]. However, the role of autophagy in
the chondrogenesis of MSCs is still poorly understood.
We found that the autophagy agonist rapamycin signifi-
cantly decreased the chondrogenic gene signature such as
COL2, AGG, and SOX9 in the differentiating MSCs,
whereas the autophagy blocker 3-MA promoted chondro-
genesis, indicating an inhibitory role of autophagy in the
chondrogenic differentiation of MSCs.

Mechanical stress has also been shown to be an im-
portant regulatory factor in MSC differentiation, and
mechanical compression such as shear stress induces
chondrogenesis in MSCs by upregulating the chondro-
genic genes [44, 45]. LIPUS also produces mechanical
stress in the form of acoustic waves and enhances the
matrix gene expression in mature chondrocytes [17, 19,
46]. Furthermore, our and others’ studies have shown
that LIPUS augmented TGF-Bl-induced chondrogenic
differentiation of MSCs [20, 21]. Ebisawa.et al. indicated
that pellet culture of MSCs is essential for the induction
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panel—representative immunofluorescence images showing LC3+ cells (green); scale bars = 50 um. Right panel—bar graph comparing the number of
LC3+ cells. The values are the mean =+ SD of triplicate experiments; *P < 0.05

of chondrocyte differentiation and that TGF both accel- transmembrane cell surface stress receptor and mechan-

erates differentiation and facilitates acquisition of cell
machinery to respond to the LIPUS signal [20]. In our
previous study, we also indicated that LIPUS promoted
TGEF-B1-induced chondrogenesis of MSCs, represented
by increased expression of COL2, AGG, and SOX9
genes. In addition, as integrins are a type of

istic target of the rapamycin (mTOR) plays a key role in
autophagy, we found that LIPUS increased the integrin
and p-mTOR expression of MSCs. Moreover, the posi-
tive effects of LIPUS on chondrogenesis of MSCs were
prevented by integrin and mTOR inhibitors. These re-
sults suggested us that integrin-mTOR signaling
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Fig. 5 Effects of LIPUS on the chondrogenesis of MSCs treated with autophagy agonist or inhibitor. a Representative images of
immunocytochemistry staining of COL2 (upper panel) and toluidine blue staining (lower panel) in differentiated MSCs stimulated with varying
intensities of LIPUS; scale bars = 100 pm. b—d Bar graphs showing relative levels of COL2 (b), AGG (c), and SOX9 (d) mRNA in LIPUS-stimulated
and unstimulated MSCs. The values are the mean + SD of triplicate experiments; *P < 0.05

pathway might mediate the LIPUS-induced inhibition of
autophagy [21]. In the present study, we found that
LIPUS enhanced chondrogenesis by inhibiting autoph-
agy. However, addition of an autophagy agonist (rapamy-
cin) suppressed the pro-chondrogenic effects of LIPUS
to some extent, indicating the involvement of other
pathways in MSC chondrogenesis. Nevertheless, our
findings provide new insights into cell-based articular
cartilage regeneration.

Conclusion

In conclusion, autophagy plays a key role in chondro-
genesis of MSCs, and LIPUS promotes the chondrogenic
differentiation of MSCs via autophagy inhibition. There-
fore, we deduce that autophagy plays a key role in the
promotional effects of LIPUS on the chondrogenesis of
MSCs. Our findings provide the mechanistic basis for
cartilage repair using LIPUS and MSCs.
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