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Predifferentiated amniotic fluid ®

mesenchymal stem cells enhance lung
alveolar epithelium regeneration and

reverse elastase-induced pulmonary

emphysema
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Abstract

Introduction: Pulmonary emphysema is a major component of chronic obstructive pulmonary disease (COPD).
Emphysema progression attributed not only to alveolar structure loss and pulmonary regeneration impairment, but
also to excessive inflammatory response, proteolytic and anti-proteolytic activity imbalance, lung epithelial cells
apoptosis, and abnormal lung remodeling. To ameliorate lung damage with higher efficiency in lung tissue
engineering and cell therapy, pre-differentiating graft cells into more restricted cell types before transplantation
could enhance their ability to anatomically and functionally integrate into damaged lung. In this study, we aimed
to evaluate the regenerative and repair ability of lung alveolar epithelium in emphysema model by using lung
epithelial progenitors which pre-differentiated from amniotic fluid mesenchymal stem cells (AFMSCs).

Methods: Pre-differentiation of eGFP-expressing AFMSCs to lung epithelial progenitor-like cells (LEPLCs) was
established under a modified small airway growth media (mSAGM) for 7-day induction. Pre-differentiated AFMSCs
were intratracheally injected into porcine pancreatic elastase (PPE)-induced emphysema mice at day 14, and then
inflammatory-, fibrotic-, and emphysema-related indices and pathological changes were assessed at 6 weeks after
PPE administration.

Results: An optimal LEPLCs pre-differentiation condition has been achieved, which resulted in a yield of approximately
20% lung epithelial progenitors-like cells from AFMSCs in a 7-day period. In PPE-induced emphysema mice, transplantation
of LEPLCs significantly improved regeneration of lung tissues through integrating into the lung alveolar structure, relieved
airway inflammation, increased expression of growth factors such as vascular endothelial growth factor (VEGF),
and reduced matrix metalloproteinases and lung remodeling factors when compared with mice injected with
AFMSCs. Histopathologic examination observed a significant amelioration in DNA damage in alveolar cells,
detected by terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling (TUNEL), the mean linear
intercept, and the collagen deposition in the LEPLC-transplanted groups.
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Conclusion: Transplantation of predifferentiated AFMSCs through intratracheal injection showed better alveolar
regeneration and reverse elastase-induced pulmonary emphysema in PPE-induced pulmonary emphysema mice.

Keywords: Predifferentiation, Amniotic fluid mesenchymal stem cell, Elastase-induced pulmonary emphysema

Background

Chronic obstructive pulmonary disease (COPD) is charac-
terized by airflow limitation and irreversible lung structure
damage, leading to steadily increasing mortality rates [1].
Emphysema is one of the major components of COPD,
which is characterized by persistent and chronic inflam-
mation, alveolar walls destruction, and permanent enlarge-
ment of air spaces. This leads to progressive disability and
death in COPD patients worldwide [2].

Inhalation of noxious substances, such as cigarette
smoke, is the major risk factor for developing emphysema.
Years of noxious particle exposure causes the infiltration
of inflammatory cells, especially neutrophils and macro-
phages, into the airways. This results in the activation of
various proteolytic enzymes and proteinases, including
neutrophil elastase and matrix metalloproteinase-9,
which destroy the alveolar structure [3]. Apoptosis of
lung epithelial and endothelial cells is critical for the
pathogenesis of emphysema caused by cigarette smoke
exposure [4]. Cigarette smoke exposure can progres-
sively reduce antioxidant and autophagic defensive
abilities in lung epithelial and endothelial cells, thereby
driving cells towards apoptosis [5]. Persistent oxidative
stress could deplete the balance between self-renewal
and cell differentiation in stem cells and progenitors,
which results in impaired alveolar regeneration in lung
tissue with emphysema [6].

Current treatments for COPD include reduction of dys-
pnea, prevention of exacerbation and disease progression,
and improvement of quality of life to reduce mortality [7].
After decades of efforts to identify therapeutic strategies
to treat COPD, smoking cessation and anti-inflammatory
pharmacologic agents, such as antagonists of cytokines
such as tumor necrosis factor-a and interleukin-8, are the
mainstays of treatment [8]. However, under these thera-
peutic approaches, while COPD patients do improve their
life quality and reduce both symptoms and acute exacer-
bations, there is no prevention of disease progression and
therefore no reduction in mortality [9]. Stem and progeni-
tor cell therapies have been widely considered as the best
potential candidates for the treatment of respiratory
diseases and destructive disorders such as COPD/emphy-
sema [9, 10]. Their capability of differentiating into various
cell types [11], immunomodulatory effects [3], paracrine
effects [12], and anti-apoptosis [13] can help to repair and
regenerate lung tissue after injury.

Various stem cells and delivery routes have been used to
treat experimental models of elastase-induced emphysema
[5]. Transplantation of embryonic stem cells (ESCs) that
can be differentiated to type II alveolar epithelial cells have
been shown to improve symptoms in the mouse and
patient with emphysema [14, 15]. Other sources of MSCs
harvested from various tissues (including bone marrow,
adipose, umbilical cord blood, amniotic fluid and lung
tissue) revealed some beneficial effects on the reversal of
lung structure destruction, tissue regeneration, neutrophil
infiltration, and collagen deposition [9, 16].

Although transplanted stem or progenitor cells con-
tribute only marginally to lung regeneration, a variety of
microenvironmental mediators in the damaged lung can
affect precisely differentiation of engrafted cells. This
may influence the therapeutic efficacy for the repair of
the damaged lung. Thus, in other disease models, such
as neurological disease and myocardial infarction, pre-
differentiating stem cells into specific cell types prior to
transplant might be a better approach [17, 18]. Direct
transplantation of type II alveolar epithelial cells, which
are known progenitor cells for alveolar epithelium, also
modulates the inflammatory response and alveolar edema
fluid clearance. This is accomplished by secretion of
soluble paracrine factors, and alveolar epithelial barrier
restoration occurs via differentiation into type I alveolar
epithelial cells in acute lung injury [19, 20] and fibrotic
animal models [21, 22]. Similarly, established stable hESCs
or induced pluripotent stem cells (iPSCs) that can be dif-
ferentiated and enriched into a pure population of type II
alveolar epithelial cells may be suitable for transplantation
to treat lung injury [23, 24].

AFMSCs are particularly interesting because of their
potential benefits when considering them for medical
use. Amniotic fluid is a novel stem cell source that is
regarded as medical waste. AFMSCs have the poten-
tial to differentiate into each of the embryonic germ
layer cells, remarkable self-renewal ability, and a lack
of ethical concern and are easy to isolate and abun-
dantly available, and they possess privileged immuno-
logical characteristics that make them an ideal and
reliable candidate for cell therapy [25]. Several papers
have reported that engrafted AFMSCs can differen-
tiate into lung lineage cells and integrate into damage
sites or induce local regeneration in lung injury animal
models [16, 26, 27].
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In this work, we aim to identify if predifferentiation of
AFMSCs to LEPLCs before transplantation would result in
a better outcome in terms of cell survival, anti-inflammatory
response, tissue regeneration, and histopathological
improvement in a lung emphysema animal model.

Methods

Isolation and characterization of murine AFMSCs
AFMSCs were derived from the amniotic fluid of preg-
nant eGFP-transgenic mice (days 11.5). First, the yolk
sac was ruptured with a 27-gauge needle. AFMSCs were
recovered and cultured in o-minimal essential medium
(a-MEM) (Life Technologies) supplemented with 10%
EBS and 1% penicillin/streptomycin and were incubated
at 37°C in a 5% CO, incubator as described in Wen et
al. [28] (Additional file 2: Figures S1A and S1B).

Flow cytometry analysis

Flow cytometry was used to examine the purity of
isolated AFMSCs by detection CD44, stem cell antigen 1
(Sca-1), CD105 (eBioscience), CD34, CD90 (BD Bio-
sciences), CD29, CD11b, CD73, CD106, and CD45 (R&D
Systems) expression on the cell surface as described in
Peng et al. [29] (Additional file 2: Figure S1E). To confirm
the percentage of differentiated AFMSCs towards
LEPLCs, we detect the presence of TTF-1, SP-C, AQP-5,
and CCSP in cells according to the manufacturer’s instruc-
tions. Briefly, detached cells were fixed with 4% para-
formaldehyde for 15min, permeabilized with 0.25%
Triton X-100 for 15 min, blocked with 4% BSA in PBS for
1h, and then incubated overnight at 4 °C with the follo-
wing intracellular marker antibodies at appropriate dilu-
tions: TTF-1 (Abcam, 1:250 dilution), SP-C, AQP-5, and
CCSP (Millipore, all at 1:250 dilutions). The cells were
then incubated with an appropriate Alexa Fluor® 546
dye-conjugated secondary antibody (1:200) at room
temperature for 2 h. After rinsing the cells twice, fluo-
rescence was detected and analyzed using flow cytometry
(FACSCalibur).

In vitro differentiation

To induce the isolated AFMSCs towards differentiation
into adipogenic and osteogenic cell lineages, cells were
cultured to 100% confluency and then cultured in either
an adipogenic medium (ax-MEM containing 10% FBS,
1uM dexamethasone, 0.5mM isobutylmethylxanthine,
10 ug/mL insulin, and 100 uM indomethacin), or an
osteogenic medium (a-MEM containing 10% FBS, 1 uM
dexamethasone, 10mM glycerol 2-phosphate, and
50 uM ascorbic acid 2-phosphate). The medium was
changed twice a week. After 3 weeks of induction, Oil
Red O staining was performed to evaluate the adipoge-
nesis efficiency by examining the intracellular accumula-
tion of lipid droplets (Additional file 2: Figure S1C).

Page 3 of 13

Additionally, alizarin red staining was performed to
evaluate the osteogenesis efficiency by detecting calcium
mineralization (Additional file 2: Figure S1D).

To induce the isolated AFMSCs towards differentiation
into lung epithelial progenitor-like cells, we use optimal
media formulation described previously, with slight modifi-
cations [30]. AFMSCs were plated on 0.1% gelatin-coated
culture dishes for 24h and cultured to confluency. Then,
the culture medium was changed to, which comprises a
small airway basal medium (SABM) supplemented with
0.5 mg/mL BSA, 5mg/mL insulin, 10 mg/mL transferrin,
30 mg/mL bovine pituitary extract, 0.5 mg/mL epinephrine,
0.5 mg/mL hydrocortisone, 0.5ng/mL human EGF 1%
penicillin-streptomycin, and 50 ng/mL FGF-10 [30]. The
medium was changed every 2 days. After 7 days of induc-
tion, flow cytometry analysis was performed to detect lung
epithelial cell lineage markers.

Intratracheal transplantation of stem cells into PPE-
induced lung emphysema murine model

Pulmonary emphysema was induced by intratracheal in-
stillation, as previously described [12, 31]. Eight-week-old
male ICR mice were purchased from the Lasco (Taipei,
Taiwan). All experimental procedures were approved by
the Institutional Animal Care and Use Committee of
Chang Gung University (Taoyuan, Taiwan; IACUC No.
CGU15-156), and the experiments were performed in ac-
cordance with the guidelines. Mice were randomly picked
to different groups, and there were at least 5 or more mice
in each group. Each mouse was intratracheally admi-
nistered 1.5 mg/kg porcine pancreatic elastase (PPE) dis-
solved in 50 pL sterile PBS on day 0. After 2-week period
of PPE treatment, mice were randomly selected for intra-
tracheal injection (1 x 10> cells in 50 ul PBS) of AFMSCs,
LEPLCs, or PBS. After 4-week period of stem cells/PBS
treatment, the mice were sacrificed by an overdose of
2.5% avertin and the therapeutic effects were examined.

Histology and immunofluorescence (IF)

Left lung tissues were fixed with 10% formalin overnight
and paraffin embedded. Tissues were sectioned and
stained with hematoxylin and eosin (H&E) according to
standard protocols [32]. The severity of lung emphysema
was assessed by measuring the mean linear intercept
(Lm) [33]. The distance in airspace size between the
alveolar walls was calculated by drawing equally distri-
buted horizontal lines across each alveolus from wall to
wall and recording the length for each measurement. Five
random microscopic fields within each lung section were
observed [34]. For IF analysis, the paraffin-embedded
sections were deparaffinized and then blocked with 4%
fetal bovine serum in PBS with 0.2% Triton X-100 for
2 h at room temperature. Sections were then incubated
overnight at 4 °C with primary antibody as follows: anti-
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pro-SPC (Millipore, 1:4000), anti-AQP-5 (Millipore,1:800),
and anti-GFP (Millipore, 1:750). Sections were incubated
with secondary antibody (Alexa Fluor® 488 conjugated
goat anti-mouse IgG or Alexa Fluor® 647 conjugated goat
anti-rabbit IgG) for 1 h at RT. After washing with PBS, the
slides were stained with DAPI for nuclear counterstaining
and mounted with FluoreGuard Mounting Medium (Bio-
systems).

Masson trichrome and Sirius red stain for lung fibrosis analysis
To determine collagen content, the lung tissue sections
were subjected to Masson’s Trichrome staining (TRM-2,
SCYTEK Laboratories) according to the manufacturer’s
protocol. For Picrosirius red staining, slides were de-
paraffinized and rehydrated and then stained with
hematoxylin for 1 min. After washing, the slide was
immersed in Picrosirius red solution for 30 min. Then,
the slides were washed in 4% Glacial acetic acid solution,
dehydrated, and mounted. Stained slides were examined
using bright field microscopy.

Terminal deoxynucleotidyl transferase dUTP nick-end
labeling staining (TUNEL) assay

To detect the apoptotic cells in the damaged lung, lung
tissue sections were subjected to TUNEL staining using the
In Situ Cell Death Detection Kit, Fluorescein (Roche)
according to the manufacturer’s protocol. The stained slides
were then stained with DAPI for nuclear counterstaining
and mounted with FluoreGuard Mounting Medium.

RNA isolation and quantitative real-time RT-PCR

Total RNA was prepared from lung tissue using the
EasyPrep Total RNA Kit (TOOLS). RNAs were reverse
transcribed into cDNAs using an MMLV Reverse Tran-
scription kit (Protech). Quantitative real-time RT-PCR
was performed using LightCycler 480 SyberGreen I
Master Mix and the LightCycler® 480 Instrument (Roche)
as previously described [35]. Sequences of the gene-specific
primers used are listed in Additional file 1: Table SI.
Relative gene expression was determined by the AACt
method, where Ct is the threshold cycle. The relative
mRNA expression levels were normalized to the mRNA
level of the reference Gapdh gene.

Western blot analysis

Western blot analysis to examine the indicated proteins
was performed as described previously [36]. Brief, 50 pg of
total proteins from cell lysates was loaded onto each lane
and the proteins were separated in sodium dodecyl sulfate
polyacrylamide electrophoresis (SDS-PAGE; Bio-Rad
Laboratories). After electrophoresis, the resolved proteins
were transferred to PVDF membrane (Millipore). The
membranes were blocked with 5% skimmed milk powder
(Anchor) in phosphate-buffered saline-Tween (PBS-T):
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phosphate-buffered saline (PBS, Sigma-Aldrich) contain-
ing 0.1% Tween-20 in (Sigma-Aldrich) for 2 h and probed
overnight with the following antisera at appropriate dilu-
tions: 1:500 dilution of the anti-proSPC and anti-AQP-5
(Millipore) and a 1:10,000 dilution of the anti-B-actin
(Novus Biologicals) antisera in PBS-T. Identification of
each protein was achieved with the Western Lightning
ECL Plus (Millipore) using an appropriate horseradish
peroxidase (HRP)-conjugated secondary antibodies
(Jackson Immuno Research Laboratories). Protein levels
in the western blot analysis were detected and quantified
by the Amersham Imager 600 imaging system (GE
Healthcare Life Sciences). To adjust for loading diffe-
rences, the optical density of each protein was normalized
to that of the -actin band.

Statistical analysis

Data are presented in bar graphs as the mean + SD. Dif-
ferences between groups were analyzed using one-way
analysis of variance analysis (ANOVA), followed by the
Dunnett’s post hoc test. When results were not normally
distributed, a Kruskal-Wallis test followed by Dunn’s
tests between groups was performed. All data were plot-
ted and analyzed using GraphPad Prism. For all analyses,
a p value < 0.05 was considered statistically significant.

Results

Optimization of lung cell lineage differentiation in AFMSCs
To induce differentiation into lung cell lineages, AFMSCs
were cultured in a modified small airway growth media
(mSAGM). This lead to the highest expression of surfac-
tant protein C (SPC; a marker for type II alveolar epithelial
cells) and thyroid transcription factor 1 (TTF-1, a marker
for lung cell precursors and an essential regulator for a
series of lung cells) expressing cells [30]. To decide the
optimal differentiation condition, flow cytometry was used
to analyze a series of lung epithelial markers in type I
alveolar epithelial cells (aquaporin 5, AQP-5), type II
alveolar epithelial cells (SPC), clara cells (clara cell
secretory protein, CCSP), and lung precursor (TTF-1) at
different time points. After 5 days of incubation, AFMSCs
started to differentiate towards lung precursor (3.19%
TTE-1" cells) and lung cell lineages (2.13% SPC",
3.14% AQP-5, and 4% CCSP" cells) (Additional file 3:
Figure S2A). We then observed a marked increase in the
percentage of the lung precursor (20.8% TTF-1" cells) and
lung cell lineages (12.8% SPC", 26.6% AQP-5", and 21%
CCSP" cells) at 7 days (Fig. 1a). At 9 days, more AFMSCs
differentiate to lung precursor (36.5% TTF-1" cells) and
lung cell lineages (69.8% SPC", 61% AQP-5", and 27.6%
CCSP* cells) (Additional file 3: Figure S2B). Protein
expression of these markers in the differentiated AFMSCs
were then confirmed by immunofluorescence (Fig. 1b).
Type I alveolar epithelial cells were characterized as the
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Fig. 1 Characterization of predifferentiated AFMSCs (LEPLCs) under modified small airway growth medium (mSAGM) induction. AFMSCs were
differentiated for 7 days and then immunostained with lung epithelial progenitor-like markers TTF-1, SPC, AQP-5, and CCSP. a Flow cytometry
analysis was performed. b Immunocytochemistry staining for endogenous eGFP (green) and lung epithelial progenitor-like markers (red) in

differentiated cells at 7 days. Scale bar =200 um

terminally differentiated nonproliferative state, and 9 days
of incubation resulted in high AQP-5 expression. There-
fore, a 7-day incubation was used for the following
experiments.

Downregulated expression of emphysema factors in LEPLC-
transplanted PPE-induced pulmonary emphysema mice

To assess the effects of LEPLCs in the PPE-induced pul-
monary emphysema model, the mRNA expression levels
of candidate emphysema-related genes were determined.
We examined the expression of the extracellular matrix
gene which assembled normal pulmonary architecture,
elastin [37], the cell adhesion molecule, which recruits
inflammatory cells to the damaged lung, intercellular ad-
hesion molecule 1 (Icam-1) [37], the protease, and matrix
metalloproteinase-9 (Mmp-9) [38]; the mediator that
maintain the homeostasis of alveolar compartment, vascu-
lar endothelial growth factor a (Vegfa) [39]; and mediator
secreted specifically by type II alveolar epithelial cells
which can reduce alveoli surface tension, surfactant pro-
tein A (Spa) [16]. Downregulation of elastin, Vegfa, and
Spa mRNA levels and upregulation of Icam-1 and Mmp-9
were detected after 6 weeks of PPE treatment when com-
pared with the PBS control group (Fig. 2¢ to g). Although
AFMSCs transplantation increased elastin and Vegfa
mRNA levels and reduced Icam-1 and Mmp-9 mRNA
levels, there was a more significant improvement in the
LEPLCs transplantation group at 4-weeks after stem cell
transplantation (Fig. 2c to g).

We next investigated the lung histopathologic sections
from each experimental group at 4 weeks post stem cell
transplantation (Fig. 2a). H&E staining showed that
alveolar space increased in the lungs injected with PPE
but was significantly attenuated by transplantation of
AFMSCs and LEPLCs (Fig. 2a). Quantification of alveo-
lar destruction was measured using the mean linear
intercept length (Lm). The Lm was markedly increased
in the PPE group when compared to the PBS control
group, and the Lm was decreased in the AFMSC-
transplanted mice and was further decreased in the
LEPLC-transplanted mice (Fig. 2b).

Downregulated expression of inflammatory and fibrotic
factors in LEPLC-transplanted PPE-induced pulmonary
emphysema mice

To assess the effects of LEPLCs on inflammation and
fibrosis in the PPE-induced pulmonary emphysema model,
mRNA expression levels of pro-inflammatory cytokine,
pro-Il-1B, the inflammation-mediator, {/-6, inducible nitric
oxide synthase (Inos), and monocyte chemotactic protein-1
(Mcp-1) were examined. Expression levels were signi-
ficantly upregulated after 6 weeks of PPE treatment
when compared with the PBS control group (Fig. 3a to
d). Both AFMSCs and LEPLCs transplantation reduced
these inflammatory mediators at 4 weeks after stem cell
transplantation (Fig. 3a to d). Then, we determined the
effect of LEPLCs on the expression of extracellular matrix
components involved in the progression of lung fibrosis,
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including collagen types I and III, and transforming growth
factor-beta 1 (Tgf-B1) (Fig. 4e to g). Expression of these
fibrotic-related factors was markedly upregulated after 6
weeks of PPE treatment when compared with the PBS con-
trol group, but the mRNA levels were significantly reduced
in the AFMSC-transplanted mice and further decreased in
the LEPLC-transplanted mice (Fig. 4e to g). Pulmonary fi-
brosis is characterized by excessive extracellular matrix pro-
duction and deposition; therefore, we performed Masson’s
trichrome and Sirius red staining on lung histopathologic

Page 7 of 13

sections from each group after 4 weeks after stem cell
transplantation (Fig. 4a and c). The thickness of the violet
ECM layer around the small airways was significantly in-
creased at 6 weeks post-PPE injection and was significantly
reduced in the AFMSC-transplanted mice and further re-
duced in the LEPLC-transplanted mice (Fig. 4b). Deposition
of collagen fibers was also examined by Sirius red staining,
and a 6-fold increase in the amount of collagen fibers in the
PPE group was detected. Transplantation of AFMSCs
showed a significant decrease in the accumulation of
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collagen fibers, and we observed further reduction of colla-
gen in the LEPLCs-transplantation group (Fig. 4d).

Potential roles of transplanted LEPLCs in PPE-induced
pulmonary emphysema mice

To assess whether the engrafted LEPLCs trapped in and
ameliorated the damaged lungs at 6 weeks post-PPE
treatment, GFP-labeled AFMSCs or LEPLCs were in-
tratracheally administered into the PPE-treated mice.
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Quantitative real-time RT-PCR showed an approximately
7-9-fold increase in Gfp expression levels, and Western
blot analysis also showed an approximately 2-3-fold
increase in both the AFMSC- or LEPLC-transplanted
mice, but no GFP expression was detected in either the
PBS or PPE-Ctrl groups (Fig. 5a and b). Immunofluores-
cence staining showed no GFP-labeled cells in lung tissue
of the PBS or PPE-Ctrl groups, but numerous GFP-
labeled cells were observed in both AFMSC or LEPLC
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Fig. 5 Expression and localization of eGFP-labeled transplanted cells in the

cells and nuclei were stained with DAPI (blue). Magnified views with 20 um
images with 100 um bars (second row)

real-time RT-PCR and b Westemn blot analysis were performed to detect GFP expression in the lung tissues of mice after 4-week period of PBS,
AFMSCs, or LEPLCs treatment following PPE administration. Values were normalized to Gapdh or (3-actin levels and were expressed relative
to the PBS group. *p < 0.05, **p < 0.01, and ***p <0.001. Each dot represents an individual mouse with the mean shown for n > 5 per group.
¢ Immunofluorescence staining for the distribution of GFP in lung tissues. Green signal observed in the lung section indicates GFP-positive
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treatment groups 4 weeks post stem cell transplantation
(Fig. 5¢). Most of the GFP-positive cells were distributed
around the bronchi.

Impairment of alveolar regeneration and increased
apoptosis in structural alveolar cells contribute to emphy-
sema [5]. After PPE treatment, the mRNA and protein
expression levels of the type I and type II alveolar epithe-
lial cell-specific markers (AQP-5, and SPC) were markedly
reduced when compared with the PBS control (Fig. 6a and
b). Transplantation of AFMSCs increased the expression
levels of SPC and AQP-5, which were further increased in
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the LEPLC-transplanted mice (Fig. 6a and b). Immuno-
fluorescence staining also observed that the number of
SPC-positive and AQP-5-positive cells in the lung tissue
was obviously reduced 6 weeks after post-PPE treatment.
Transplantation of either AFMSCs or LEPLCs recovered
the number of SPC-positive and AQP-5-positive cells in
the damaged lung tissue (Fig. 6¢ and d). In addition, part
of the SPC-positive cells was specifically distributed
around the bronchi that expressed GFP protein (Fig. 6¢
and d). After 6 weeks post-PPE treatment, the number of
TUNEL-positive cells significantly increased, indicating

A —=PBS = PPE-AFMSC B PPE =PBS = PPE-AFMSC
S == PPE-Ctrl o PPE-LEPLC == PPE-Ctrl oo PPE-LEPLC
7] 5 PBS Ctrl  AFMSC LEPLC *k
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Fig. 6 Transplantation of LEPLCs enhanced the expression of lung epithelial progenitor-like markers in the PPE-induced pulmonary emphysema
mouse model. a Quantitative real-time RT-PCR and b Western blots analysis expression of SPC and AQP-5 in whole lung tissues of animals that
received PBS, AFMSCs, or LEPLCs after 4-week period of PBS, AFMSCs, or LEPLCs treatment following PPE administration. Values were normalized
to the Gapdh values and were expressed relative to the PBS group. The histogram on the right shows the semiquantitative densitometry of the
Western blot analysis determined using ImageJ. Data are expressed as the mean =SD; n 2 5 per group. *p < 0.05, **p < 0.01, and ***p < 0.001.

¢, d Immunofluorescence staining of (c) GFP-positive cells (green) and type Il alveolar epithelial markers, pro-SPC (red); d type | alveolar epithelial
markers, AQP-5 (green), and nucleus (DAPI; blue) in mouse lung tissues from each group treated as described above. The white dotted line areas
in the (c) upper panel are magnified in the lower panel with 10 um bars, and the expressions of pro-SPC and GFP were co-localized (yellow,
arrowheads). Scale bar =100 um
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the presence of more apoptotic cells within the lung alveo-
lar wall. Transplantation of either AFMSCs or LEPLCs
significantly reduced the incidence of PPE-induced apop-
totic cells in the lung tissue (Fig. 7).

Taken together, our data indicated that transplanted
LEPLCs engrafted, attenuated inflammatory and fibrotic
effects, increased alveolar regeneration, and reduced
structural alveolar cell apoptosis in PPE-induced pul-
monary emphysema mice.

Discussion

This is the first report using predifferentiated AFMSCs
to treat mouse lung emphysema. Because of the low
efficiency of accurate differentiation at lung damaged
site and the heterogeneity of undifferentiated MSCs,
these are unsuitable for clinical application. Thus, the
predifferentiated strategies not only could enrich the
lung progenitors to accelerate and reconstruct the dam-
aged area, but also be great help in developing minimally
self-originating regenerative therapeutic.

The use of PPE to induce experimental emphysema,
where lung injury develops rapidly, easily, inexpensively,
and severely than cigarette smoke [40]. In the present
study, we used a model of a single intratracheal instil-
lation of PPE, which causes histological and morphological
characteristics, lung inflammation, and collagen deposition
closely resembling human emphysema [41]. MSCs were
administered 2 weeks after the PPE administrate, when
alveolar structure was destructed, and mild emphysema
were already established [12].

Following the promising results of MSC-based cell
therapy in an experimental model of pulmonary emphy-
sema in 2006 [42], a variety of sources of MSCs (bone
marrow, adipose tissue, lung, amniotic fluid) have been
transplanted into proteolytic enzyme- or cigarette
smoking-induced COPD-like animal models. These studies
have shown a therapeutic potential for transplanted MSCs
on improving lung architecture, lung tissue remodeling,
modulating inflammatory response, and decreasing apop-
tosis and collagen accumulation in pulmonary emphysema
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mouse model [43-45]. In this study, we used amniotic
fluid mesenchymal stem cells, which possess self-renewal
capacity, clonal properties [28], and multilineage differen-
tiation ability (Additional file 2: Figure S1), and lack tera-
toma formation potential and ethical concerns [46]. In
comparison with that of Li et al. in which AFMSC-based
therapy can alleviate the lung emphysema [16], our results
further observed that transplanted AFMSCs had yielded
beneficial effects on reducing inflammation and fibrosis,
enhancing lung alveolar epithelium regeneration and
reversing emphysema.

The low efficiency of accurate and precise differen-
tiation of engrafted stem cells in the damaged lung re-
inforces the notion that progenitor cell populations are
considered as better therapeutic agents for accelerate
healing and reconstruct the damaged area [47]. In
addition, CCSP-positive Clara cells are thought as a
progenitor cell population for the distal conducting
airways and could theoretically contribute to alveolar epi-
thelial repair in naphthalene-injured rodent model [48].
Other evidence observed that 4 integrin-expressing AEC-
progenitor or p63/keratin 5-expressing basal epithelial-
progenitor populations may play a role in alveolar epithelial
regeneration in fibrotic lung [49]. However, a lung progeni-
tor cell showed benefit on directly differentiating to specific
cellular lineage, but studies mentioned that progenitor cell
cannot be maintained in a proliferative state over multiple
passage. Therefore, generating a pure and abundant
population of lung progenitor cells is a key problem
[50]. Taken together, transplantation of undifferentiated
cells and progenitors had both therapeutic benefit and
limitation; we therefore see value in using predifferen-
tiated MSCs into alveolar epithelial lineage prior to
transplant in the emphysema model.

Based on this idea, Wang et al. established a stable
genetic modified hESCs that can be differentiated and
enriched into a pure population of type II alveolar epi-
thelial cells may be suitable for transplantation to treat
lung injury [23]. Other reports have established pre-
differentiating protocol for ESCs [51] or iPSCs [24, 52]
into alveolar epithelial cells, and transplantation of these

PBS PPE-Ctrl

Fig. 7 Transplantation of LEPLCs attenuated apoptosis in the PPE-induced pulmonary emphysema mouse model. C57BL/6 mice received PBS,
AFMSCs, or LEPLCs after 4-week period of PBS, AFMSCs, or LEPLCs treatment following PPE administration. Lung tissues were subjected to
immunofluorescence staining to determine the colocalization of apoptotic cells (TUNEL stain; green) and nucleus (DAPI; blue). Scale bar =100 pm

J

PPE-AFMSC PPE-LEPLC
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predifferentiated cells exerts a better therapeutic approach
in lung disease models.

Mounting evidence has shown that transplanted MSCs
exert their beneficial effects in part via paracrine factors
and/or transdifferentiation to epithelial cells that contri-
bute to restoring the destructed lung architecture [26, 44].
In addition, evidence showed that MSC-based tissue
repair partly relies on secreting paracrine factors to estab-
lish a regenerative microenvironment and repair the
damaged sites [53]. The potential mechanism of trans-
planted AFMSCs may act by modulating inflammation,
apoptosis, fibrosis, and cell proliferation via the paracrine
effectors [54, 55]. We further evaluated the therapeutic
potential of these predifferentiated AFMSCs in a PPE-
induced lung emphysema mouse model. Reports showed
that both type I and II alveolar epithelial cells are con-
stantly contributing to airway defense. Specifically, type II
alveolar epithelial cells may secrete a variety of mediators
to modulate the inflammatory response in lung injury [56,
57]. In this study, we observed downregulation of the
expression of inflammatory factors, pro-IL-f, IL-6, INOS,
and MCP-1 upon transplantation of either AFMSCs or
LEPLCs. Both transplantation groups showed improve-
ment in terms in the presence of fibrosis, and both groups
had increased SPC" (type II alveolar epithelial cell) and
AQP-5" (type I alveolar epithelial cell) cell regeneration.

Previous studies have shown that transplanted stem cells
via intratracheal injection may distribute around the
bronchi [32, 35] and may be found in alveolar capillaries
or larger blood vessels after an intravenous injection [58].
Our results also observed that transplanted AFMSCs or
LEPLCs were engrafted surrounding the bronchi. Thus,
we propose that transplantation of either AFMSCs or
LEPLCs may restore damaged type II alveolar epithelial
cell around the bronchi and repair the alveoli structure
collapse which heavily relies on paracrine effects to estab-
lish a regenerative microenvironment eventually repair the
damaged sites.

Cumulative observations found that coexistence emphy-
sema (ECM breakdown) and fibrosis (ECM overaccumula-
tion) should not be that unusual [59], which is in line with
the increased and accumulated collagen as observed in air-
ways of our PPE-induced emphysema mouse model. One
possible mechanism is that elastase degradation relative
abundance of collagen and elastin leads to alveolar destruc-
tion. At the same time, elastase may promote myofibroblast
differentiation at the regions of alveolar wall destructive tis-
sue to restore collagen content, eventually causing fibrosis
[60]. In the remodeling process of emphysema, TGF-f3 plays
a key role in stimulating myofibroblast proliferation and
secretion of collagen fibers [61]. Either AFMSCs or LEPLCs
reduced collagen accumulation in airways and TGF-B1
expression level; hence, LEPLCs were able to completely
restore collagen level in the lung parenchyma.
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Conclusion

This study uses an optimal differentiation condition of
mouse amniotic fluid mesenchymal stem cells towards
LEPLCs in vitro under modified small airway growth
medium (mSAGM). Transplantation of pre-differentiated
LEPLCs through intratracheal injection adapted to the
microenvironment, attenuated inflammatory and fibrotic
effects, recovered alveolar regeneration, and reduced
structural alveolar cells apoptosis in PPE-induced pulmon-
ary emphysema mice.
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Additional file 1: Table S1. Primer sequences. (DOCX 19 kb)

Additional file 2: Figure S1. Characterization of amniotic fluid
mesenchymal stem cells (AFMSCs) isolated from eGFP-expressing transgenic
mice. (A and B) The morphologies of identified mouse AFMSCs in single layer
under bright and fluorescence fields, respectively. (C and D) Differentiation of
AFMSCs into mesodermal cell types after specific induction for 21 days is
marked by the appearance of lipid granules (adipogenic) by Oil Red O
staining and mineralized matrix (osteogenic) by Alizarin red staining. Scale
bar =200 pm. (E) Immunophenotypes of eGFP-AFMSCs by flow cytometric
analysis of the cell surface antigens CD44, Sca-1, CD105, CD34, CD29, CD11b,
CD90, CD73, CD106, and CD45, respectively. (JPG 6883 kb)

Additional file 3: Figure S2. Predifferentiation of AFMSCs in modified
small airway growth medium (mSAGM) for 5- and 9-day induction.
AFMSCs were differentiated for 5- and 9-days and then immunostained
for lung epithelial progenitor-like markers, TTF-1, SPC, AQP-5, and CCSP.
Flow cytometry analysis was performed. (JPG 556 kb)
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