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The influence of cerebrospinal fluid on epidermal
neural crest stem cells may pave the path for
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Abstract

Introduction: Epidermal neural crest stem cells (EPI-NCSCs) in the bulge of hair follicles are a promising source for
cell-replacement therapies in neurodegenerative diseases. A prominent factor in cell-based therapy is the

practicalities of different routes of administration. Cerebrospinal fluid (CSF), owing to its adaptive library of secreted
growth factors, can provide a trophic environment for transplanted cells. Thus, the effect of CSF on the behavior of

EPI-NCSC was studied here.

proliferation of EPI-NCSCs after cultivation in CSF.

Methods: In this study, the highly pure population of EPI-NCSCs was obtained from the bulge of mouse hair
follicle. Migrated cells were characterized with real-time polymerase chain reaction (RT-PCR) and
immunocytochemistry. Subsequently isolated stem cells were cultured in CSF, which was collected from the
cisterna magna of the adult rat. The expression of pertinent markers was assessed at the gene and protein levels
with RT-PCR and immunocytochemistry, respectively. Colorimetric immunoassay was used to quantify the rate of

Results: Isolated EPI-NCSCs could survive in the CSF, and they maintained the expression of nestin, 3—tubulin Il
(early neuronal marker), and glial fibrillary acidic protein (GFAP, glia marker) in this environment. In addition, CSF
decreased the proliferation rate of EPI-NCSCs significantly in comparison to primary and expansion culture medium.

Conclusions: Our findings demonstrate that CSF as a cocktail of growth factors helps EPI-NCSCs to acquire some
desirable traits, and because of its circulatory system that is in close contact with different parts of the central
nervous system (CNS), can be a practical route of administration for delivery of injected stem cells.
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Introduction

Epidermal neural crest stem cells (EPI-NCSCs) are
multipotent stem cells that persist in the bulge of hair
follicles through adulthood, and they have the capacity
to generate various types of differentiated cells under ap-
propriate culture conditions [1]. EPI-NCSCs are one of
the main derivatives of transient embryonic neural crest
that retain the neurologic differentiation potential of
their neural crest origin. The neural crest forms during
gastrulation and locates in the boundary between som-
atic ectoderm and neuroectoderm. It leaves the closing
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neural tube during late neurulation, invades the embryo,
and give rise to distinct cell types and tissues, such as
craniofacial bone/cartilage, meninges, tooth papillae, the
autonomic and enteric nervous systems, sensory ganglia,
endocrine cells of the adrenal medulla, smooth muscula-
ture of the cardiac outflow tract, and great vessels and
pigment cells (melanocytes) of the skin and internal or-
gans. The bulge region within the outer root sheath of
the hair follicle is one of the prime targets of the neural
crest during development that serves as a specialized
niche for epidermal stem cells [2-6]. EPI-NCSCs exhibit
several characteristics of embryonic and adult stem cells.
Similar to embryonic stem cells, these cells show a high
level of physiological plasticity, and they can be easily
expanded under in vitro condition. Similar to other
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kinds of adult stem cells, they are a promising group of
stem cells that do not elevate ethical concern. Despite all
these similarities, this unique type of stem cells can circum-
vent several setbacks associated with embryonic stem cells,
such as immunologic incompatibility. Moreover, they are
relatively abundant and accessible in the bulge area of hairy
skin and can be isolated by a minimally invasive procedure.
However, most of other types of adult stem cells are fairly
sparse and approachable with difficulty [7-9].

Previous studies have established that local signaling
and regional identity during migration of neural crest
cells play a crucial role in cell-type specification, and several
investigations have emphasized on the importance of the
concerted action of a combination of growth factors on sur-
vival, proliferation, and differentiation of neural crest cells
at multiple levels [10,11]. Therefore, it is quite conceivable
that the CSE, as a cocktail of secreted growth factors, can
provide a trophic environment for survival and proliferation
of these multipotent stem cells. This issue has received
support from numerous studies that examined the critical
influence of CSF-borne signals not only on neuroectodermal
cells during brain development but also on survival,
proliferation, and fate specification of neural stem cells
in adult brain throughout life [12-18]. Furthermore, the
close ontologic relation between EPI-NCSCs and stem
cells of the central nervous system (CNS) has fueled this
hypothesis that the CSF can be an instructive milieu for
these cells because the fate of neural progenitor cells at
the brain-CSF interface is governed by CSF [19,20].

Based on these facts, in this experiment, the influence
of CSF on the EPI-NCSCs was studied to demonstrate
whether it can help these cells to acquire some desirable
traits that establish them as an appealing candidate for
cell-replacement therapy in different CNS injuries and
neurodegenerative diseases.

Materials and methods

All experimental protocols of this study were approved
by local ethics committee at Babol University of medical
sciences.

Cerebrospinal fluid collection

CSF was collected from the cisterna magna (CM) of
Wistar rats with 200 to 300 g of body weight by using a
fire-polished 1-ml syringe connected to a 27G dental nee-
dle. Here the animal was anesthetized with xylazine 2%
and ketamine 50 mg/kg per body weight intraperitoneally
and placed on the stereotaxic instrument (Stoelting,
Wood Dale, IL, USA). Specially constructed ear bars were
placed in the external auditory meatus, and the head was
flexed downward at approximately 90 degrees so that the
occipital bone was almost horizontal. A median incision
was made, and the cervicospinal muscle was reflected
and the posterior atlanto-occipital membrane exposed.
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The needle was inserted vertically and centrally to the de-
pressible surface with a rhomboid appearance between the
occipital protuberance and the spine of the atlas. A gentle
aspiration flow the CSF through the syringe. Collected
CSF was transferred to a sterile microtube on ice and
centrifuged (Sigma, Osterode am Harz, Germany) at
10,000 rpm for 10 minutes to remove cells or debris,
and ultimately all supernatants were stored at —80°C
until use. Because the volume of collected CSF from
each rat was approximately 100 pl, to provide adequate
volume of CSF for the experiment, it all was pooled.

Chick embryo extract preparation

The head of the day-11 chick embryo was cut off. Then the
embryo was chopped, homogenized with an equal volume
of HBSS (PAA, Austria), and the mixture was incubated
for 30 minutes on ice. Subsequently, it was centrifuged
at 12,000 rpm for 30 minutes at 4°C, and the supernatant
was removed and passed through 0.45-pm and 0.22-pm
filters sequentially.

Dissection of the bulge from adult whisker follicle

The bulges of hair follicles were microdissected from
whiskers of 3 week-old NMRI mice as described previously
[1]. In brief, pups were killed by cervical dislocation, and
follicles of the whisker pad were dissected, cleaned, and
cut longitudinally and then transversely (below and above
the bulge region). Subsequently, the bulges were rolled
out of their capsules and explanted into collagen-coated
24-well culture plates (Roche, Mannheim, Germany; TPP,
Switzerland) (Figure 1).

Isolation and in - vitro expansion of EPI-NCSCs

Explanted bulges were cultured in Alpha-modified
MEM (PAA, Pasching, Austria) supplemented with
10% fetal bovine serum (FBS) (PAA), 5% day-11 chick
embryo extract (CEE), and 1% penicillin/streptomycin
(PAA). Fifty percent of the culture medium was ex-
changed every other day. After observation of migrated
cells, the bulge explants were carefully removed with a
27G needle to minimize the rate of contamination with
other undesirable later-migrating cell types, such as
keratinocytes. Adhering EPI-NCSCs were resuspended
by trypsinization, placed in fresh collagen-coated
plates at 7 x 10* cells per each well of four-well plate
(SPL Life Sciences, Pochun, South Korea), and cultured
for another 24 hours. Thereafter, isolated EPI-NCSCs
were cultured in two different mediums. The first
group of cells was expanded in the culture medium
that consisted of 90% Alpha-modified MEM plus 10%
day-11 chick embryo extract supplemented with fibro-
blast growth factor-2 (FGF-2, 20 ng/ml; Sigma-Aldrich,
St. Louis, MO, USA). Likewise, a second group of cells
were cultivated in the collected CSF for 72 hours.
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cultivated in only CSF for 72 hours.

Figure 1 Schematic view of EPI-NCSC isolation and culture. The whisker pad (B) of 3-week-old mouse (A) was cut, and hair follicles (C) were
dissected. The bulge region (D) was rolled out from the capsule of hair follicle and explanted in a-MEM, 10% FBS, and 5% CEE (primary explant).
After 10 days, migrated EPI-NCSCs were trypsinized and cultured in a-MEM supplemented with 10% CEE and FGF (expansion medium) or cells

CSF

—

o-MEM+10%FBS+5%CEE

¥

—

a-MEM+10%CEE+FGF

Immunofluorescent staining

Indirect immunofluorescent staining was performed to
demonstrate the presence of Nestin, B-tubulin III and
GFAP-positive cells in the population of migrated cells
or cells after their cultivation in different media. Cul-
tures were washed twice with phosphate-buffered saline
(PBS; PAA) for 2 minutes and fixed with 4% paraformal-
dehyde (Merck, Germany) in PBS at room temperature
(RT) for 12 minutes, followed by three 5-minute TPBS
washes (0.05% Tween-20 in PBS, Sigma-Aldrich). They
were permeabilized with 0.2% Triton X-100 (Merck) in
PBS at RT for 10 minutes and then were washed again
in TPBS for three 5—minute intervals, and blocked with
1% BSA in TPBS at RT for 1 hour. Primary antibody
was added, diluted appropriately in blocking buffer,
and incubated overnight at 4°C. Cultures were then rinsed
3 times with TPBS for 5 minutes each, followed by addition
of secondary conjugated antibody diluted (1:250) in
blocking buffer and incubated in the dark for 1 hour at
RT. Secondary antibody was removed, and three, 5-minute
TPBS washes were performed, followed by counterstaining
with propidium iodide (PI) (Sigma-Aldrich). Primary
antibodies used included rabbit anti-Nestin (1:200)
(Abcam, Cambridge, UK.), rabbit anti-p-tubulin III
(1:50) (Sigma-Aldrich), and rabbit anti-GFAP (1:1,000)
(Abcam). Goat anti-rabbit IgG was used as secondary
antibody (Sigma-Aldrich).

RNA extraction, cDNA synthesis and polymerase chain
reaction

Total RNA was extracted by using RNX-Plus solution
(Cinnagen, Iran) followed by genomic DNA digestion
with RNase-free DNase I (Thermo Scientific, Waltham,
MA, USA). RNA concentration was quantified by WPA
spectrophotometer (Biochrom) and Hellma lens (Hellma
Analytics). Subsequently 500 ng of DNA-free RNA was
reverse transcribed by using the RevertAid first-strand
cDNA synthesis kit per manufacturer’s instructions
(Thermo Scientific). Primers for reverse transcription
PCR were designed by AlleleID 6 software on exon
junctions or spanned long introns. Primer sequence
and amplicon lengths are listed in Table 1. Hypoxanthine

guanine phosphoribosyl transferase (Hprt) served as a
housekeeping gene for normalization. Conventional
PCR was carried out to verify the EPI-NCSC origin of
isolated cells. In brief, for each 25-ul PCR reaction,
these components were mixed: 2.5 pl PCR buffer, 0.5 pl
dNTP mix, 0.75 pl of 50 mM MgCl,, 0.5 pl of each primer,
1 ul ¢cDNA template, 0.625 unit Taq enzyme, and the re-
quired volume of distilled water. Thermocycling parameters
were 94°C for 3 minutes and 35 cycles of 94°C for 30
seconds, 60°C for 30 seconds, and 72°C for 1 minute by
using Mastercycler gradient system (Eppendorf, Germany).
To inspect PCR products, 5 pl of each PCR product was
loaded onto 2% agarose gel and stained with GelRed
(Biotium, Hayward, CA, USA) dye for 30 minutes. Gels
were visualized with UV illumination, and images were
captured by using GENE FASH gel-documentation system
(Syngene Bio Imaging).

For quantitative comparison, compatibility of each primer
set efficiency with Hprt primers was validated by qRT-PCR
of dilution series of cDNA templates. Each reaction (20 pl)
consisted of 10 pl 2x SYBR Premix Ex Taqll (Takara),
0.8 pl forward primer, 0.8 pl reverse primer, 2 pl first-strand
¢DNA template (1:3 in distilled water), and 6.4 pl distilled
water. Thermocycling was conducted as follows: 95°C for
30 seconds to activate HotStart enzyme, 40 cycles of 95°C
for 5 seconds followed by 60°C for 35 seconds by using a
Rotor-Gene Q instrument (Qiagen). At the end of each
run, melting-curve analysis was performed, and a single
amplification peak was considered specific amplifica-
tion. Ct values of target genes were normalized against
Hprt Ct (ACt), and the relative expression of each target
was determined by using the AACt method.

Colorimetric immunoassay of cell proliferation

To quantify the proliferation of EPI-NCSCs in different
medium, after trypsinization and counting, they were
seeded at a density of 2.5 x 10* cells/pl in a 96-well plate
(Orange Scientific, Belgium) and after 24 hours, they
were cultivated in four different mediums, (a) a-MEM,
(b) a-MEM with 10% FBS and 5% CEE, (c) a-MEM
supplemented with 5% CEE and FGF, and (d) 100% CSF.
Cultures were maintained at 37°C in a 5% CO, atmosphere
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Gene Forward primer (5'-3') Reverse primer (5-3') Amplicon length
Sox-10 TAGCCGACCAGTACCCTCAC GCCTCTCAGCCTCCTCAATG 114
Nestin AAGCAGGGTCTACAGAGTCAG AGTTCTCAGCCTCCAGCAG 121
GFAP GAGAAAGGTTGAATCGCTGGAG GCTGTGAGGTCTGGCTTGG 138
B - Tubulin Il CCGCCTGCCTTTTCGTCTC GGTCTATGCCGTGCTCATCG 131
Hprt GGGCTTACCTCACTGCTTTC CTGGTTCATCATCGCTAATCAC 137
for a further 72 hours. Cell proliferation was deter- Results

mined by using the colorimetric BrdU enzyme-linked
immunosorbent assay (ELISA) kit (Roche, Mannheim,
Germany), based on incorporation of BrdU during DNA
synthesis in proliferating cells. Measurement was made on
an ELISA reader (Rayto, China) at 450 nm.

Imaging and statistical analysis

Images were obtained with the Olympus Stereomicroscope
(SZX16) and invert florescence microscope (CKX41).
Statistical analyses were performed on version 18 of
SPSS statistical software (SPSS Inc. Chicago, IL, USA)
and GraphPad Prism (Version 6.02, 1992—-2013 GraphPad
Software, Inc.) by using one-way ANOVA and the
Tukey post hoc test. A value of P < 0.05 was considered
significant.

Expression of nestin, SOX10, B-tubulin lll, and GFAP in
culture of primary explants

Within 2 to 3 days after explantation, cells with stellate
morphology emigrated from whisker bulges with increasing
numbers over time (Figure 2A, B). The phenotype of
migrated cells from bulge explants was confirmed at gene
and protein levels with RT-PCR and immunocytochemistry,
respectively. After 10 days of cultivation of explanted bulges
in culture medium containing a-MEM with 10% FBS and
5% CEE, the RT-PCR revealed the neural crest stem cell
markers, SOX10, the progenitor cell marker, Nestin, glial
marker, GFAP, and immature neurons marker, -tubulin
I1I; all were expressed in migrated cells of primary explants
(Figure 3). After prolonged cultivation of migrated EPI-
NCSC in primary media (2 weeks), cells spontaneously

200 pm

50.0 ym

B — Tubulin III £ PI

migrated cells 2 weeks after explantation .Nuclei are stained red with PI.

Figure 2 Characteristics of epidermal neural crest stem cells. (A) Morphology of cells 4 days after onset of EPI-NCSCs emigration from bulge
explants. (B) Higher magnification of boxed area in (A). (C-E) Expression of Nestin, 3-tubulin Ill, and GFAP (all green) in the population of
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SOX-10

Figure 3 Expression of key markers of EPI-NCSCs in primary explants. RT-PCR analysis of expression of the neural crest stem cell genes
(SOX10 and Nestin) and early-lineage genes (B-tubulin Il and GFAP) in primary explants. Expression of these genes validates the neural crest origin

Tubulin

differentiate into neural crest progeny, which was con-
firmed by immunostaining of migrated cells from several
explanted bulges in different wells with antibodies against
Nestin, B-tubulin III, and GFAP separately (Figure 2C, E).
Together, these observations validate expression of pertin-
ent markers and characterize the bulge-derived cells as
neural crest-derived cells.

Expression of EPI-NCSC markers proceeds in CSF
environment

The influence of CSF on characteristics of isolated
EPI-NCSCs was investigated with immunocytochemistry
and real-time PCR. Immunostaining of expanded EPI-
NCSCs after 72 hours of cultivation in CSF indicated that
these cells maintained the expression of Nestin, -tubulin
11, and GFAP, likewise cells that were plated in culture
medium supplemented with 10% CEE and FGF. Close
inspection of the cultures revealed that no cells with high
expression of either GFAP or B-tubulin III markers were
detected, supporting the notion that neither glia nor
differentiated neurons were present in both groups of
cells in two expansion media (Figure 4A). Also three
established transcripts, Nestin, f-tubulin III, and GFAP
were evaluated in EPI-NCSCs after cultivation in both
CSF and expansion medium (a-MEM + CEE + FGF) by
using qRT-PCR. Herein, the expression of mentioned
genes was calibrated with the expression of those in the
primary explants (a-MEM + FBS + CEE). The quantitative
real-time PCR data showed the expression of Nestin and
B-tubulin IIT and GFAP significantly decreased after 72
hours of cultivation in CSF (P < 0.001). Although the
expression of nestin in CSF-cultivated cells was signifi-
cantly lower than those in expansion medium (P < 0.05),
expression of the other two genes is relatively unchanged
between two groups of cells after cultivation in CSF and
expansion medium, which indicates that these two culture
conditions may share similarities in gene-expression
patterns (Figure 4B).

CSF decreases proliferation of isolated EPI-NCSCs

The influence of CSF on the self-renewal potential of
isolated EPI-NCSCs was determined with a colorimetric
BrdU ELISA kit after 72 hours of cultivation. The im-
munoassay indicated that the rate of proliferation was

significantly reduced in CSF media compared with the
primary culture and expansion medium (P = 0.009 and
P = 0.001). This assay revealed that the proliferation of
EPI-NCSCs in CSF is identical to that of cells that had
been cultured in a-MEM (Figure 5). These data illustrate
that CSF alone is able to function as a medium that
maintain stem cells in a viable state and, because of its
composition, support proliferation of cells at a lower rate.

Discussion

A wide range of CNS injuries and neurodegenerative
diseases results in various degree of cell death and
neuroinflammation. Several therapeutic approaches have
been evaluated for treatment of CNS impairment, and
stem cell therapy is one of the promising means to
achieve this aim. Cell-based therapies have recruited
different types of stem cells to replace lost cells or to
repair damaged areas. Studying the behavior of these
cells after implantation and the feasibility of the mode
of administration are two main debatable topics in
cell-based therapies [21].

This investigation revealed that CSF, due to its benefi-
cial environment, can retain viability of epidermal neural
crest stem cells, and these cells continue to express a
neural crest stem cell molecular signature after 72 hours
of cultivation in the CSF milieu. According to our find-
ings in the current study, CSF can be a suitable route
of administration for EPI-NCSCs in CNS injuries and
neurodegenerative diseases.

Previous studies have shown that EPI-NCSCs, as
adult-resident stem cells in the bulge of the hair follicle,
presents a number of advantages that make it an appro-
priate cell type for autologous transplantation. These
readily accessible stem cells can generate several types of
cells without known tumorigenic effects. Furthermore,
their potential for regeneration of peripheral nerves and
spinal cord injuries was demonstrated previously [22].
As neural crest stem cells are ontologically related to
spinal cord stem cells, EPI-NCSCs are particularly at-
tractive types of stem cell for treatment of spinal cord
injury [23]. Several studies in mouse models of spinal
cord injury showed that EPI-NCSC grafts resulted in
significant improvement in sensory connectivity and
touch perception. These cells modulate scar formation
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Figure 4 Expression of pertinent genes of EPI-NCSCs. (A) Immunocytochemistry of Nestin, B-tubulin lll, and GFAP (all green) in expanded
EPI-NCSCs after 72 hours of cultivation in CSF and expansion medium. All nuclei are stained red with PI. (B) Expression of Nestin, B-tubulin lll, and
GFAP genes in EPI-NCSCs was compared with primary explant by gRT-PCR, and the AA Ct method was used to determine alterations in
expression levels after cultivation in expansion medium and CSF. gRT-PCR showed a decreased trend in expression of all three investigated genes
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by contributing to the vascularization and by produ- matrix molecules [24-28]. In this study, a highly pure
cing multiple metalloproteases and other extracellular  population of EPI-NCSCs were obtained by virtue of
proteases that degrade different types of extracellular their migratory ability through a minimally invasive
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Figure 5 Effect of CSF on the in vitro proliferation of isolated epidermal neural crest stem cells. EPI-NCSCs were cultured in a-MEM

only ( first group) or CSF (second group), or a-MEM with 10% FBS and 5% CEE (third group), or a-MEM supplemented with 10% CEE and FGF
(fourth group) for 72 hours, and proliferation was assessed with a colorimetric BrdU ELISA kit. Proliferation of cells in either CSF or a-MEM was
significantly lower than in cells in both supplemented a-MEMs. These data did not show significant differences between the rate of proliferation
of cells in primary medium and expansion medium (third and fourth groups, respectively). "P < 0.01. Error bars, 95% ClI.
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procedure from the bulge of hair follicles. Isolated cells
expressed both neural crest marker SOX10 and stem
cell marker Nestin abundantly, which verifies their origin
and multipotency.

Besides an appropriate cell type, the practicality of
different routes of administration is another prominent
factor in cell-based therapy. Cerebrospinal fluid, beyond
its important role in the maintenance of extracellular ionic
balance and providing a fluid cushion for the CNS, was
recently implicated in carrying secreted proteins widely
throughout life. Lately several studies have demonstrated
the crucial role of CSF in neurogenesis at the brain-
cerebrospinal fluid interface, regarding its various sig-
naling factors [17,20]. Therefore it is not considered
just as a watery fluid that bathes the brain and spinal
cord. Moreover, CSF, owing to its circulatory system,
which is in close contact with different parts of the CNS,
provides a practical way for EPI-NCSCs transplantation.
Above all, CSF-constituent proteins can play an instruct-
ive role in fate determination of EPI-NCSCs, as longSAGE
gene-expression profile of these cells earlier revealed, EPI-
NCSCs express some relevant growth-factor receptors
that can convey CSF signals inside the cells [7].

Our data from culturing EPI-NCSCs in CSF has indi-
cated that these cells can survive in this environment,
and the expression of their pertinent markers proceeds
for at least 72 hours, adequate for delivering cells to

different parts of brain and spinal cord under in vivo
conditions. Interestingly, EPI-NCSCs express early lineage
markers like B-tubulin III and GFAP, which demonstrate
that these cells can differentiate into either a neuronal or a
glial lineage. Moreover, our investigation disclosed that CSF
provides a trophic environment for proliferation of isolated
EPI-NCSCs. However, the proliferation rate of these cells in
CSF was significantly lower than that of cells in primary ex-
plants and expansion medium. This acquired trait of EPI-
NCSCs after their cultivation in CSF is an attractive feature
in cell-based therapy, because tumorigenicity of stem cells
is one of the main setbacks of this approach.

Furthermore, our data show that CSF not only decreases
the proliferation of EPI-NCSCs but also does not promote
their differentiation toward any specific destiny, because
the expression of early lineage genes in this medium dimin-
ished comparison with the primary explant. This condition
can be appropriate for transplanted cells because it allows
cells to differentiate according to instructive signals of their
prospective target site.

It is noteworthy that the behavior of EPI-NCSCs in
the current investigation was studied after their cultiva-
tion in healthy CSF, and this result may vary in different
pathologic conditions. However, previously, Bai and his
colleagues [29,30] showed that the injection of neural
stem cells through the CSF is a practical method to graft
cells into traumatic and diseased lesions of the spinal
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cord. Consistently, Satake et al. in 2004 [31] reported
that transplanted mesenchymal stem cells can survive
after a lumbar CSF injection and migrate into a previously
created thoracic spinal cord injury.

Conclusions

CSF, as a cocktail of growth factors, helps EPI-NCSCs to
acquire some desirable traits. CSE, due to its circulatory
system in close contact with different parts of the CNS,
can be a practical route of administration for delivery of
injected stem cells into various parts of the CNS. Further
experiments are required to determine the fate, destiny,
and behavior of EPI-NCSCs after their administration
through CSF in spinal cord-injured animals or other
models of neurodegenerative diseases.
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