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Introduction

Myogenic specifi cation initially takes place in the somites 

of the developing vertebrate embryo and is thenceforth 

reiterated throughout the life of the organism [1]. Th is 

process will establish and maintain one of the major 

constituents of the body: skeletal muscle. Th e presence of 

tissue-specifi c stem cells, the satellite cells, gives adult 

muscle the capacity for extensive regeneration in 

response to trauma and disease [2]. Despite a funda-

mentally diff erent hormonal and anatomical environ-

ment, muscle regeneration in the adult organism 

recapitulates many aspects of embryonic myogenesis [3]. 

However, the capacity of adult muscle for regeneration 

seems to be limited and repeated degeneration is accom-

panied by increasingly ineffi  cient tissue reconstitution 

[4]. Since the discovery of the satellite cell 50 years ago, 

research has provided valuable insights into the 

molecular mechanisms that regulate the satellite cell pool 

and ultimately the potential for regenerative myogenesis 

[5,6]. Particularly, a recently discovered subpopulation of 

satellite cells with an extensive capacity for self-renewal 

and the characterized signaling molecules that control 

these cells hold great potential for therapeutic 

manipulation [7,8].

Developmental myogenesis

Skeletal muscle in all vertebrates originates from cells 

found in the mesoderm, one of the three primary germ 

layers [9,10]. Parts of the mesoderm give rise to 

segmented clusters called somites, which are aligned 

along the anterior-posterior axis of the embryo. Th e 

somites, the paraxial head mesoderm and the prechordal 

mesoderm are the source of primitive myogenic cells, 

most of which are marked by the expression of two 

paired-box (Pax) transcription factors, Pax3 and Pax7. 

Later during development, a subpopulation of these cells 

will diff er en tiate into terminally committed myocytes. 

Th e embryonic body axes then orient the fusion of these 

cells, generating the fi rst multinucleated myofi bers. In 

several subsequent waves, more embryonic myocytes 

align and fuse into precisely arranged postmitotic muscle 

fi bers that will give rise to the organism’s skeletal muscle. 

Limb, trunk and some head muscles arise from cells of 

somitic origin, whereas the remainder of the head 

muscles derive from cells of the paraxial head mesoderm 

and the prechordal mesoderm [1,11-15].

Myogenic specifi cation during development is regu-

lated by signaling factors released from the surrounding 

tissue. Among such factors are sonic hedgehog (Shh), 
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which is released from the neural tube, lateral mesoderm 

derived bone morphogenetic proteins (BMPs), and 

members of the wingless-type MMTV integration site 

(Wnt) family of proteins, which emanate from both the 

ectoderm and the neural tube [1]. On the genetic level, 

myogenic determination is modulated by Pax3/Pax7 and 

a family of transcription factors known as myogenic 

regulatory factors (MRFs) [6].

In the perinatal period, the niche in between the basal 

lamina and the muscle fi ber membrane is populated by 

juvenile satellite cells that proliferate extensively. A subset 

of theses cells will remain as quiescent satellite cells in 

the adult organism [16].

Satellite stem cells

With the exception of some head muscles, satellite cells 

in the adult are generally considered to be the progeny of 

Pax3- and Pax7-expressing cells of somitic origin [11-

14,17]. Pax transcription factors are genetic master 

switches that can imprint stem cells towards a myogenic 

fate but repress genes involved in diff erentiation. All adult 

satellite cells are marked by the expression of Pax7 whereas 

Pax3 is postnatally down regulated in most muscles [18]. 

Other molecular markers of satellite cells include vascular 

cell adhesion molecule 1 (VCAM-1), c-Met (receptor for 

hepatocyte growth factor), chemokine C-X-C motif 

receptor 4 (CXCR4), M-cadherin, neural cell adhesion 

molecule 1 (NCAM1), forkhead box protein K1 (Foxk1), 

integrin α7β1, CD34, and syndecans 3 and 4 [19].

In adult skeletal muscle only a small subpopulation of 

Pax7-expressing satellite cells derives from a lineage that 

has never expressed myogenic factor 5 (Myf5), a trans-

cription factor belonging to the MRFs. It has been 

demonstrated that these cells are capable of extensive 

self-renewal and can very effi  ciently repopulate their 

niche in transplantation experiments into satellite-cell-

depleted muscle. To date, this cell type makes up the 

most primitive and stem-like population that has been 

identifi ed in adult muscle tissue and these cells are 

therefore referred to as ‘satellite stem cells’. Conversely, a 

cell that expresses Myf5 or is descended from an ancestor 

that expressed this factor once is more prone to 

diff erentiation and is therefore termed a ‘satellite 

myogenic cell’ [7].

Regenerative myogenesis

Injury of adult muscle causes an infl ux of infl ammatory 

cells that remove necrotic debris from the tissue. 

Subsequently, Pax7-expressing satellite cells enter mitosis 

to generate progeny that will go through repeated rounds 

of proliferation and then migrate to the site of damage. A 

high percentage of this progeny will undergo myogenic 

diff erentiation in order to restore the destroyed muscle 

fi bers, whereas others will self-renew and, upon complete 

regeneration, repopulate the muscle as satellite stem cells 

[2].

Once activated by muscle injury, proliferating satellite 

cells become myoblasts through upregulation of a MRF 

called myoblast determination protein (MyoD) [18]. 

MyoD drives proliferation by controlling reentry into the 

cell cycle and activates the transcription of muscle-

specifi c genes [20]. As a last step, downregulation of Pax7 

and upregulation of myogenin primes the myoblasts to 

become myocytes. Th ese cells are terminally committed, 

exit the cell cycle and fuse with other myoblasts or 

existing fi bers. Th is process will fi nally repair the 

damaged muscle tissue [6]. Satellite cell self-renewal and 

the transcription factors controlling lineage progression 

during regeneration are thought to be regulated by a 

variety of extrinsic cues [19]. For the remaining part of 

this review, we will focus on these factors.

The satellite cell niche

A stem cell niche is defi ned as a specifi c anatomical 

location that participates in tissue generation, main-

tenance and repair. Stem cells reside in their niche for an 

indefi nite period and it protects its host from depletion 

or uncontrolled proliferation [21].

Th e satellite cell niche is exceptionally complex and the 

sources of environmental infl uences are diverse. For 

instance, satellite cells are often localized in close proxi-

mity to capillaries, which might be a means to effi  ciently 

supply them with signaling factors [22]. Furthermore, 

several cell types, such as fi broblasts and immune cells, 

can colonize muscle tissue. Th ese cells secrete cytokines 

that may infl uence satellite cells [19]. Neural input leads 

to depolarization of the muscle fi ber, which can aff ect 

satellite cells through paracrine factors and adhesion 

molecules [23,24].

Th e basement membrane and the muscle fi ber 

sarcolemma, in-between which the satellite cell is 

wedged, are the main anatomical hallmarks of its niche. 

Th e function of the extracellular matrix (ECM) for 

satellite cells during myogenesis is a matter of ongoing 

investigation. It has been documented that certain ECM 

proteins like laminin and collagen are reciprocally 

regulated by fi bronectin, hyaluronic acid and tenascin 

during muscle regeneration [25]. Fibronectin inhibits the 

diff erentiation of cultured myoblasts whereas laminin 

promotes it [26,27]. Mice suff ering from muscular 

dystrophy, which is caused by a null mutation in the 

laminin alpha 2 chain, display dramatic defects in muscle 

regeneration [28]. Furthermore, knockout of the matrix 

modifying enzyme membrane type 1 metalloprotease 

(MT1-MMP) in mice results in impaired skeletal muscle 

recovery after injury [29]. Th is evidence demonstrates 

that an intact ECM is essential for muscle repair and 

suggests that transitional changes in its composition 

Bentzinger et al. Stem Cell Research & Therapy 2010, 1:27 
http://stemcellres.com/content/1/3/27

Page 2 of 8



provide instructive cues to satellite cells. Next to its 

structural composition, the niche controls satellite cells 

through several signaling molecules that emanate from a 

wide range of sources (Figure 1).

Signaling factors regulating satellite cells

Th e amount of satellite cells decreases with age, although 

their myogenic potential does not diminish throughout 

the life of the organism [30]. Th is notion has been 

supported by experiments demonstrating a signifi cant 

myogenic capacity of satellite cells transplanted from old 

tissue into young muscle. On the other hand, when young 

cells were transplanted into old muscle, they did not 

perform well [31,32]. Furthermore, exposure of old mice 

to serum from young mice dramatically improved their 

regenerative capacity [33]. Taken together, this evidence 

indicates that satellite cells are highly regulated by 

extrinsic cues. Th e identifi cation and understanding of 

these factors will open new avenues for the development 

of therapeutic strategies. Drugs with the ability to 

increase or restore the regenerative potential of skeletal 

muscle by boosting satellite cell function or number 

could help to preserve muscle mass in degenerative 

muscular disorders.

Development of biologics for therapeutic 

manipulation of satellite cells

Satellite stem cell transplantation could theoretically be a 

promising approach to restore or enhance the regener-

ative potential of diseased muscle. In reality, such cell-

based approaches face serious limitations, including the 

need to cultivate satellite cells, their incompatibility with 

systemic delivery, and their poor survival following 

intramuscular injection [34]. For these reasons, 

Figure 1. The satellite cell niche and regulatory factors. (a) Fluorescence microscopic image of a mitotic satellite cell (metaphase) on a mouse 

muscle fi ber. The satellite cell is labeled by the expression of a yellow fl uorescent protein and DNA is stained in blue. (b) Schematic of the diff erent 

environmental cues infl uencing a satellite cell in its niche. FGF, fi broblast growth factor; HGF, hepatocyte growth factor; IGF, insulin-like growth 

factor; MGF, mechano-growth factor; NO, nitric oxide; TGF, transforming growth factor.
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alter na tive approaches need to be taken into considera-

tion. Th e existence of numerous physiological factors 

that are involved in the regulation of satellite cells 

provides an opportunity for the development of drugs 

that mimic or interfere with these molecules [18].

Biologic drugs are pharmaceuticals inherently biological 

in nature and manufactured using biotechnology [35]. 

Th e advantages of biologics over classic small molecular 

compounds are that they harness the same principles 

employed by endogenous proteins: high functional 

specifi city resulting in a well defi ned biological eff ect 

with little or no off -target activity [36]. In the following 

sections we discuss some approaches for the rational 

design of biologics mimicking or inhibiting signaling 

molecules that control satellite cell function.

Transforming growth factor-β

An impaired regenerative capacity and chronic infl am-

ma tion with hyperplasia of the interstitial connective 

tissue are pathological hallmarks of muscular dystrophy. 

Infl ammation of dystrophic muscle is dominated by 

macrophages and T lymphocytes that secrete pro-fi brotic 

cytokines. Th is causes a gradual development of fi brosis, 

which hinders muscle regeneration and ultimately leads 

to incomplete functional recovery [37]. Consequently, 

anti-infl ammatory and immunosuppressive drugs such as 

corticosteroids and cyclosporine are benefi cial for these 

conditions. However, weight gain and infections are 

common side eff ects of these pharmaceutical agents [38]. 

Th is provides a rationale for the development of thera-

peutics that target the molecular pathways involved in 

the fi brotic muscle pathology more specifi cally.

Transforming growth factor-β (TGF-β), a cytokine that 

is released by infl ammatory cells, has become a focus of 

attention in research on such signaling mechanisms [39]. 

Its expression is dramatically increased in muscular 

dystrophy [40]. Stimulation of muscle resident fi broblasts 

with this factor increases their collagen and fi bronectin 

production, which results in increased interstitial fi brosis 

[41-43]. Furthermore, TGF-β stimulates the diff erentia-

tion of cultured myoblasts into a fi brogenic cell type [44]. 

Th is suggests that TGF-β also drives satellite cells into 

this alternative lineage, which would ultimately deplete 

them from muscle and prevent effi  cient regeneration. 

More over, an increase in fi brogenic cells could further 

exacerbate muscle pathology by contributing to tissue 

fi brosis.

Inhibition of TGF-β or its downstream eff ectors by 

large molecule ligand traps and antisense oligo nucleo-

tides are novel therapeutic approaches being explored 

today [45]. It is promising that some of these therapeutics 

have already been demonstrated to ameliorate muscular 

dystrophy in certain mouse models [46]. Interestingly, a 

recent study has demonstrated a dose-dependent 

requirement of cultured myoblasts for TGF-β. Th is 

suggests that specifi c concentrations of TGF-β have 

permissive infl uences on satellite cells and it raises some 

concerns about the therapeutic window for inhibitors of 

this factor [47].

Myostatin

Myostatin has been demonstrated to be a powerful 

antagonist of muscle growth. Inhibition or genetic abla-

tion of myostatin triggers dramatic increases in skeletal 

muscle mass across many diff erent species [48]. Th e total 

number of muscle fi bers per muscle is increased in 

myostatin knockout animals [49,50]. Th is is indicative of 

increased myogenic activity. Furthermore, the application 

of myostatin to cultured myoblasts prevents diff eren-

tiation by suppressing MRFs. Conversely, silencing of myo-

statin in myoblast culture increases diff erentiation [51].

Muscle fi broblasts do express the myostatin receptor at 

high levels and its activation induces their proliferation 

and the secretion of fi brotic ECM proteins [52]. 

Myostatin inhibition could therefore be a means to 

improve regeneration of dystrophic muscle by reducing 

fi brosis while, at the same time, promoting the activation 

of satellite cells. Indeed, it has been demonstrated that 

myostatin defi ciency or systemic application of inhibitory 

antibodies slows down the degeneration in dystrophic 

muscle of mdx mice [53].

Th e direct relevance of myostatin for satellite cells 

remains a matter of ongoing investigation. It has been 

reported that satellite cells of myostatin-null mice proli-

ferate more in the resting state while the total number of 

satellite cells per muscle fi ber increases. Further more, the 

regenerative potential of myostatin knockout muscle 

seems to be superior to the wild-type counterpart [51]. 

Intriguingly, a recent report rebutted that a myostatin 

defi ciency is benefi cial for mdx mice and also excluded a 

direct eff ect of myostatin on satellite cells [54]. Th is study 

challenges several previous reports and it will be 

interesting to follow the future debate on this topic.

A number of circulating factors that control myostatin 

activity have been discovered. Among these is follistatin, 

which can function as a potent myostatin antagonist. 

Overexpression of follistatin in mice causes muscle gains 

beyond myostatin inhibition, which suggests that it 

inhibits additional negative regulators of muscle growth 

and/or satellite cells [51]. Similar to lowering myostatin 

levels, delivery of follistatin to dystrophic mice reversed 

muscle pathology and improved strength [55].

Despite the controversy regarding which cell type 

mediates the eff ects of myostatin on muscle, antagonists 

that target this factor seem to be promising candidates for 

the treatment of several muscular disorders. Future studies 

will have to clarify the potential of myostatin inhibitors for 

direct therapeutic manipulation of satellite cells.
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Insulin-like growth factor-1

Insulin-like growth factor 1 (IGF-1) is either secreted by 

the liver as an endocrine hormone or produced locally by 

other tissues where it can act in a paracrine/autocrine 

fashion [56]. Exogenous IGF-1 or genetic overexpression 

results in increased muscle mass and enhanced 

regeneration in mice. Furthermore, IGF-1 levels are 

upregulated in regenerating muscle and hypertrophy 

induced by this factor not only involves an increase in 

protein synthesis but also augments the DNA content of 

muscle [51]. Th is evidence suggests that IGF-1 supports 

the mobilization of satellite cells for muscle regeneration.

After stimulation, muscle tissue expresses high levels of 

a splice variant of IGF-1, which is termed mechano-

growth factor (MGF) [57]. MGF promotes the prolifera-

tion and inhibits the diff erentiation of cultured myoblasts 

[58]. Th e main circulating isoform of IGF-1 has the same 

eff ect on proliferation but also facilitates diff erentiation 

[59-61]. Th is indicates that the paracrine/autocrine 

eff ects of MGF rather expand the satellite cell pool, while 

other IGF-1 variants are generally activating and allow 

diff erentiation. In agreement with this idea, addition of a 

synthetic MGF peptide increased the number of desmin-

positive myogenic cells isolated from healthy and 

diseased muscles [62]. However, because desmin is 

expressed by quiescent and activated satellite cells, MGF’s 

potential for a sustained expansion of the satellite cell 

pool remains to be demonstrated [63]. Interestingly, 

mitotically active young muscle has been found to be 

most responsive to MGF, which argues against a direct 

eff ect on quiescent satellite cells [64].

In summary, there is evidence that both IGF-1 and 

MGF could be used to stimulate satellite cell function 

and proliferation under pathologic conditions. Th e fi rst 

recombinant IGF-1 drugs have recently received US Food 

and Drug Administration (FDA) approval for the 

treatment of IGF-1 defi ciency, and intense eff orts for the 

expansion of its use in diseases such as sarcopenia, 

muscular dystrophy and amyotrophic lateral sclerosis are 

ongoing [65-67].

Hepatocyte growth factor

Th e expression of hepatocyte growth factor (HGF) spikes 

during the early phase of muscle regeneration and 

decreases subsequently during regeneration. HGF is 

sequestered in the ECM of skeletal muscle and released 

upon injury. Th is factor can stimulate the proliferation of 

cultured myoblasts while inhibiting diff erentiation [2]. In 

agreement with these fi ndings, the application of 

recombinant HGF to injured muscle slows regeneration 

while increasing the number of activated satellite cells 

[68]. Th is suggests that HGF serves to activate quiescent 

satellite cells in the immediate phase after injury while 

blocking diff erentiation. Once the pool of proliferating 

satellite myogenic cells is suffi  ciently expanded in the 

later stages of muscle regeneration, HGF levels decline 

and diff erentiation is initiated. It remains to be 

determined whether treatment with HGF could be used 

to mobilize satellite cells in situations of inactivity, such 

as atrophy or cachexia.

It has been demonstrated that nitric oxide (NO) 

signaling may act upstream of HGF to modulate the 

activation state of satellite cells. NO seems to augment 

active HGF by triggering its release from the ECM 

through metalloproteinases [69]. Furthermore, increased 

levels of NO promotes regeneration of normal and 

dystrophic muscle [70,71]. Th e delivery of pharmaceutical 

compounds to increase NO signaling in diseased skeletal 

muscle is feasible and candidate drugs are currently being 

investigated [72].

Fibroblast growth factor

Several fi broblast growth factors (FGFs), particularly 

FGF-6 and FGF-2, have been demonstrated to induce the 

proliferation of cultured myoblasts while inhibiting their 

diff erentiation [2,73]. Th is indicates a role for these 

factors in the expansion of the satellite cell compartment. 

For instance, FGF-6 expression is muscle specifi c and is 

increased during regeneration [74]. However, results 

from studies of injury-challenged muscle in FGF-6-

defi cient mice are controversial. Some reports demon-

strated impaired regeneration whereas others could not 

confi rm such eff ects [74,75].

FGF2 is sequestered in the basement membrane 

surrounding developing and adult myotubes, and 

neutrali zing antibodies against FGF2 seem to delay or 

prevent muscle regeneration in the immediate period 

after injury [76,77]. Furthermore, FGF2 appears to 

facilitate satellite cell divisions and muscle regeneration 

in dystrophic mice [78]. Moreover, the combined loss of 

the FGF2 and FGF6 genes increases the dystrophic 

pathology in the musculature of mdx mice, whereas the 

transgenic delivery of both factors to damaged muscle 

enhances regeneration [79,80].

Th erapeutic recombinant FGFs or biologically active 

derivatives could potentially be used to enhance the 

regenerative potential of muscle by increasing satellite 

cell number. However, further studies will have to clarify 

whether FGF treatment leads to the therapeutically 

desirable expansion of the satellite stem cell compartment 

as opposed to the presumably rather transient eff ects 

caused by an increase in satellite myogenic cells.

Wnt

 Wnt proteins are secreted lipid-modifi ed glycoproteins that 

act through Frizzled (Fzd) receptors. Mammals harbor 19 

diff erent wnt and 10 fzd genes. Historically, Wnt signaling 

has been divided into ‘canonical’ β-catenin-dependent 
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and ‘noncanonical’ β-catenin-independent signaling 

path ways. More recently, this classifi cation has been un-

dermined and crosstalk between the canonical and non-

canonical pathways has been described [81].

Given the variety of Wnts, it is not surprising that dif-

ferent species can excerpt both inhibitory and per missive 

eff ects on myogenic diff erentiation. For instance, some 

Wnt molecules facilitate myogenesis during regenera tion 

while others have been demonstrated to drive the diff er-

entiation of satellite cells into a fi brotic lineage [82,83].

It has been reported that a temporal switch from 

activation of the Notch pathway to increased Wnt3a 

signaling is required for myogenic lineage progression 

and consequently for eff ective muscle regeneration. Th e 

eff ects of Wnt3a and Notch signaling are mediated by the 

modulation of the common intracellular eff ector 

glycogen synthase kinase 3β (GSK3β) [84].

A recent study demonstrated that components of the 

noncanonical planar cell polarity (PCP) pathway regulate 

the expansion of satellite stem cells during muscle 

regeneration in concert with Wnt7a. Wnt7a is expressed 

by muscle fi bers in the immediate period after myocyte 

fusion. Th is suggests that Wnt7a release is a physiological 

means to expand the satellite stem cell pool after the 

initial phase of myogenesis. In agreement with this 

theory, muscle-injury-challenged Wnt7a-defi cient mice 

display a reduced number of satellite stem cells. Further-

more, Wnt7a application enhances the regenera tive 

capacity of skeletal muscle dramatically [8]. Th is demon-

strates conclusively that an expansion of the satellite stem 

cell population is benefi cial for skeletal muscle 

regeneration and suggests that manipulation of Wnt7a/

PCP signaling could be therapeutically relevant. Future 

studies will have to address the feasibility of recombinant 

Wnt7a, or mimetics of this factor, for the treatment of 

diseases that are accompanied by a disequilibrium in the 

satellite stem cell pool.

Conclusions

Knowledge about the factors that regulate satellite cell 

activity is not only crucial for their direct manipulation 

but will also foster the success of other approaches, such 

as stem cell therapy. Our understanding of the molecular 

mechanisms that control the specifi cation and 

diff erentiation of satellite cells into a postmitotic muscle 

fi ber has grown tremendously and a complexity far 

beyond expectations has emerged. In parallel, however, 

promising new starting points for the development of 

therapeutics have been discovered and it is only a matter 

of time until this translates into eff ective treatment 

options for degenerative muscular diseases.
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