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Abstract

Stem cells are an important resource for tissue repair and regeneration. While a great deal of attention has focused on
derivation and molecular regulation of stem cells, relatively little research has focused on how the subcellular structure
and composition of the cell membrane influences stem cell activities such as proliferation, differentiation and homing.
Caveolae are specialized membrane lipid rafts coated with caveolin scaffolding proteins, which can regulate cholesterol
transport and the activity of cell signaling receptors and their downstream effectors. Caveolin-1 is involved in the
regulation of many cellular processes, including growth, control of mitochondrial antioxidant levels, migration and
senescence. These activities are of relevance to stem cell biology, and in this review evidence for caveolin-1 involvement
in stem cell biology is summarized. Altered stem and progenitor cell populations in caveolin-T null mice suggest that
caveolin-1 can regulate stem cell proliferation, and in vitro studies with isolated stem cells suggest that caveolin-1
regulates stem cell differentiation. The available evidence leads us to hypothesize that caveolin-1 expression may stabilize
the differentiated and undifferentiated stem cell phenotype, and transient downregulation of caveolin-1 expression may
be required for transition between the two. Such regulation would probably be critical in regenerative applications of
adult stem cells and during tissue regeneration. We also review here the temporal changes in caveolin-1 expression
reported during tissue repair. Delayed muscle regeneration in transgenic mice overexpressing caveolin-1 as well as
compromised cardiac, brain and liver tissue repair and delayed wound healing in caveolin-1 null mice suggest that
caveolin-1 plays an important role in tissue repair, but that this role may be negative or positive depending on the tissue
type and the nature of the repair process. Finally, we also discuss how caveolin-1 quiescence-inducing activities and
effects on mitochondrial antioxidant levels may influence stem cell aging.
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Introduction

Stem cells are an important resource for tissue regener-
ation. Much stem cell research has focused on stem cell
sourcing and stem cell regulation by external stimuli
(reviewed in [1]). However, relatively little is known about
the composition of the stem cell membrane, the
organization of which can affect cell responses to external
stimuli. Specifically, membrane lipid rafts are recognized as
important platforms regulating activity at the cell surface.
These cholesterol-rich and sphingolipid-rich liquid-ordered
phases in the cell membrane allow compartmentalization
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and clustering of signaling molecules [2,3]. Concentration
of signaling molecules in membrane rafts may enable amp-
lification, cross-talk, specificity or inhibitory regulation of
cell signaling. One flask-shaped subtype of membrane raft,
the caveola [4,5], is the regulation center for a plethora of
cell signaling events owing to the activity of its
distinguishing caveolin scaffolding proteins [6]. There are
three caveolin proteins, which are essential for caveolae for-
mation, cholesterol binding [7-10] and cholesterol traffick-
ing [10-12]. As shown in Figure 1, the caveolin proteins
form a hairpin loop in the cell membrane with their N-ter-
mini and C-termini remaining in the cell cytoplasm [13,14].
The cytoplasmic portion of the caveolin protein contains a
caveolin scaffolding domain sequence that can bind to
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Figure 1 Structure and general activities of caveolae/caveolin-1. Structure (box): caveolae are flask-shaped invaginations in the cell
membrane coated with multimers of caveolin scaffolding proteins. The N-termini and C-termini of caveolin proteins are in the cell cytoplasm, but
a hairpin loop of the protein is inserted into the cell membrane. Caveolin-1 has a caveolin scaffolding domain (CSD) that can bind to and affect
the activity of a variety of cell signaling molecules. Activities: various caveolae/caveolin-1 activities that have been reported in different cell types
are depicted. Caveolin-1 binds to cholesterol and can regulate mitochondrial levels of cholesterol. Caveolae are rich cholesterol stores as well as
membrane reservoirs that can stretch to buffer mechanical and osmotic stress at the cell surface. Caveolin-1 can regulate cellular levels of nitric
oxide (NO) through regulation of NO synthase activity. Caveolin-1 can inhibit cell growth and activate cell senescence by inhibition of mitogen-
activated protein (MAP) kinases and binding to the p53 inhibitor MdM2. Caveolin-1 can also regulate other growth and differentiation signaling
pathways by caveolar endocytosis of cell surface receptors and sequestering secondary messengers such as (3-catenin. Caveolin-1 also participates
in focal adhesion signaling and internalization of integrins upon cell detachment. For references, see main text. BMP, bone morphogenetic
protein; MLC, myosin light chain; PI-3-kinase, phosphatidylinositol 3-kinase; TGF@, transforming growth factor beta.
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many different cell signaling molecules and effect cell signal
transduction (reviewed in [6,15]).

Given its expression in many cell types, the role of
caveolin-1 in cell activities has been well researched. The

Caveolae are particularly abundant in adipocytes, endo-
thelial cells, pulmonary type I cells and muscle cells [10].
Assays of various mouse and rat tissues have determined
that caveolin-1 is most highly expressed in fat and lung tis-
sue [16-20], but it is also expressed in many other tissues
and differentiated cell types [18,19,21-28]. Caveolin-2 is
usually co-expressed with caveolin-1 and appears unable to
form caveolae in the absence of caveolin-1 [17,18,29].
Caveolin-3, meanwhile, is highly expressed in muscle cells
[19,22,30].

growth factor receptors and signaling molecules that
localize to caveolae and/or interact with caveolin-1 include
the platelet-derived growth factor receptor and the epider-
mal growth factor (EGF) receptor, G-protein coupled re-
ceptors, G-protein alpha and beta subunits, Src, endothelial
nitric oxide synthase, and proteins in the Ras-p42/44
mitogen-activated protein kinase and phosphatidylinositol
3-kinase—Akt pathways [6,15]. While association of signal-
ing molecules with caveolin-1 is usually inhibitory [6,15],
signaling can be enhanced, probably by bringing molecules
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in close proximity to one another [31]. Furthermore, bind-
ing to the caveolin-1 scaffolding domain may enhance the
activity of some enzymes. This has been demonstrated
in vitro with the insulin receptor kinase [32]. Figure 1 sum-
marizes functions attributed to caveolae and caveolin-1 in
various cell types. If present in stem cells, many of these
activities could impact stem cell behavior. This review dis-
cusses current research findings that implicate caveolin-1 in
the regulation of stem and progenitor cell activity, tissue
repair and aging.

Caveolin-1 regulation of cell proliferation

Inhibitory association of signaling molecules with caveolin-1,
as well as caveolin-1 regulation of intracellular cholesterol
levels [33], may be responsible for the mostly inhibitory ef-
fects of caveolin-1 on differentiated cell proliferation
[29,34-38]. In the caveolin-1 null mouse, enlarged popula-
tions of cells expressing stem cell markers in the gut, mam-
mary gland and brain have been observed [39-41],
suggesting that caveolin-1 may also negatively regulate stem
cell proliferation. Furthermore, others have noted that the
bone marrow-derived mesenchymal stem cells (MSCs) from
the caveolin-1 null mouse have a higher proliferative rate in
culture [42], and in mouse neural progenitor cells caveolin-1
facilitates glucocorticoid receptor signaling that leads to in-
hibition of proliferation [43]. Meanwhile, in human MSCs,
Park and colleagues showed that caveolin-1 expression in-
creases when cells are cultured to senescence [44],
suggesting that caveolin-1 expression is inversely associated
with the proliferative rate of human MSCs. In agreement,
we have shown that siRNA-mediated knockdown of
caveolin-1 expression in human MSCs increases their prolif-
eration [45].

Conversely, in mouse embryonic stem cells (ESCs),
caveolin-1 and caveolae structure appear to be required for
cell renewal. Treatment of ESCs with caveolin-1 siRNA or
with methyl-B-cyclodextrin, which depletes membrane
cholesterol thus disrupting the caveolae structure, reduces
the cell proliferation index [46]. Furthermore, when mouse
ESCs are seeded on fibronectin, caveolin-1 phosphorylation
and caveolae integrity are required in downstream events
that activate DNA synthesis [47]. Caveolin-1 also mediates
estradiol-17f-induced cell proliferation [48] and its expres-
sion is required for EGF-induced cell proliferation and glu-
cose induction of DNA synthesis in ESCs [49]. Caveolin-1
may therefore negatively regulate the proliferation of adult
murine and human progenitor cells, but in murine ESCs
caveolin-1 may be positively involved in proliferative
signaling.

Caveolin-1 effects on cell differentiation

Caveolin-1 is known to regulate Wnt/p-catenin signaling
[50-54], transforming growth factor beta signaling [55-62]
and bone morphogenetic protein (BMP) signaling [63-67],
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all pathways that can guide stem cell fate. Meanwhile,
caveolin expression typically increases upon cell differ-
entiation in vitro [16-20,23,30,68-72], including upon osteo-
genic differentiation of human MSCs [45] and neurogenesis
of rat MSCs [73]. This may reflect negative feedback, where
caveolin-1 expression increases as cells differentiate to
stabilize the phenotype and prevent continued growth and
differentiation. For example, bone marrow MSCs from the
caveolin-1 null mouse have greater osteogenic potential
[74], suggesting that caveolin-1 inhibits osteogenesis. This
may explain the increased postnatal bone formation rate in
these animals [74]. We have also shown that caveolin-1
knockdown enhances human MSC osteogenesis [45].
Caveolin-1 also inhibits murine and rat neuronal and
oligodendral differentiation [73,75,76] and human MSC
adipogenesis [44].

Caveolin-1 regulation of differentiation probably occurs
within caveolae through interactions with receptors and
downstream signaling molecules for differentiation stimuli.
In accordance with this idea, MSC osteogenic differenti-
ation can be promoted by the cholesterol biosynthesis in-
hibitor simvastatin [77-79], and by oxysterols, which
suppress caveolin-1 expression and cause caveolin-1 trans-
location out of caveolae [80,81]. Also, bone marrow MSCs
isolated from mouse models of osteoporosis or high bone
mineral density have decreased and increased responsive-
ness to BMP2, respectively, due to dysregulated localization
of the BMP receptor la with caveolin-1 isoforms, and
dysregulated caveolae trafficking in response to BMP2
[82,83]. Caveolae endocytosis of BMP receptors can also
affect rat MSC differentiation [84] (as described further
below) and active p-catenin levels are elevated in cells ex-
pressing stem cell markers in the intestinal crypts and
mammary gland of the caveolin-1 null mouse [39,40], while
caveolin-1 regulation of neurogenesis may occur via effects
on Notch signaling [73].

Caveolin-1/caveolae regulation of matrix-directed stem
cell differentiation

Engler and colleagues showed that MSCs can differentiate
according to their substratum elasticity [85]. MSCs seeded
on a soft substrate with an elastic modulus similar to brain
tissue differentiate into nerve cells, while MSCs seeded on
a substrate with an elastic modulus similar to bone differ-
entiate into osteoblasts, and those seeded on a substrate
with an elastic modulus similar to muscle differentiate into
myoblasts [85]. This phenomenon depends on nonmuscle
myosin II activity [85]. As summarized in Figure 2, Du and
colleagues have shown that, at least on soft substrates, the
mechanism involves caveolin-1 and caveolar endocytosis
[84]. In MSCs seeded on a soft substrate, there is increased
activation and internalization of [B;-integrin via caveolae
endocytosis. BMP receptor la co-localized with p;-integrin
is consequently also internalized, thus inhibiting pro-
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Figure 2 Caveolae endocytosis helps couple regulation of differentiation signals to culture substrate elasticity. When mesenchymal stem
cells are seeded on a stiff substrate with an elastic modulus similar to bone, focal adhesions and stress fibers form and nonmuscle myosin Il
expression increases. Cells osteogenically differentiate on the stiff substrate. The activity of nonmuscle myosin I, which promotes the assembly of
focal adhesions, is required for substrate-driven differentiation. As nonmuscle myosin Il expression increases in cells seeded on a stiff substrate, it
may allow cells to form more focal adhesions and generate the greater force needed to deform a stiff matrix. When cells are seeded on a soft
substrate, the integrin contacts with the substrate may be easily ruptured by nonmuscle myosin ll-generated forces on the cell cytoskeleton.
Expression of nonmyosin Il remains lower and less focal adhesions and stress fibers form than in cells seeded on a stiff substrate. Activated
integrins from ruptured contacts with the substrate are internalized by caveolar endocytosis. The bone morphogenetic protein receptor 1a
(BMPR1a) is co-internalized and the potential for pro-osteogenic bone morphogenetic protein (BMP)-induced Smad signaling is reduced as a
result. Cells neurogenically differentiate on the soft substrate. For more information, refer to [84,85].
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osteogenic BMP signaling [84]. Du and colleagues calcu-
lated that integrin adhesions to the substratum should be
more easily ruptured on soft than on stiff substrates [84].
Therefore, when an adherent cell pulls on (or deforms) its
matrix, more integrin contacts should be ruptured if that
matrix is soft. Ruptured integrin contacts may then be
endocytosed in caveolae [84]. In sum, this means tensile
forces generated by nonmuscle myosin II when a cell de-
forms its matrix could be coupled to caveolar endocytosis
to modulate availability of cell signaling platforms necessary
for directing cell differentiation.

Intriguingly, culture of muscle stem cells on substrates
with a similar rigidity to muscle improves their viability and
proliferation in culture and maintains their stemness and
regenerative potential [86]. Thus, stem cells possibly re-
spond to changes in matrix elasticity only when it is differ-
ent to their tissue of origin [85]. The mechanism behind
this and the potentially important role of caveolae is a very
interesting topic that deserves further exploration.

Meanwhile, it is interesting to note that caveolin-1 may
promote astroglial differentiation [87] and is required for
human microvascular endothelial cell tubule formation in a
Matrigel differentiation assay [70]. Perhaps this observation
indicates that caveolin-1 inhibition of some signaling

pathways protects or promotes activation of other path-
ways. We have found that knockdown of caveolin-1 expres-
sion in MSCs decreases mRNA expression of the
pluripotency marker POU5F1/Oct4 (unpublished observa-
tions), and others have found that caveolin-1 expression
and caveolae structure are important for maintaining
mouse ESC expression of pluripotency markers (Oct4,
Sox2, FoxD3, Rexl) [46]. One could hypothesize that
caveolin-1 may act to maintain the stemness of MSCs by
holding growth factor receptors and signaling molecules in
an inhibited state in caveolae, and/or committing them to
caveolar endocytosis. Meanwhile, alterations to caveolin-1
expression or activity may release inhibition of signaling
molecules to allow MSCs to be more responsive to other
growth and differentiation stimuli. Then, as MSCs differen-
tiate, caveolin-1 expression may increase dramatically to
stabilize the new phenotype and prevent continued differ-
entiation. This idea is schematically summarized in
Figure 3A. Coupling the activity of caveolin-1 and caveolae
to cell-matrix interactions would be one way to couple
caveolin-1/caveolae regulatory activity on differentiation
signals to a cell's environment. Another way caveolin-1/
caveolae activity may be controlled is via cholesterol, which
is discussed later.
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development based on in vitro and in vivo observations [88,89]. Prolactin, estrogen and progesterone compete to control caveolin-1 expression.
Caveolin-1 inhibits prolactin signaling by binding to the prolactin receptor-associated kinase Jak2. At birth, levels of prolactin are high and levels
of estrogen and progesterone drop. Prolactin is thus able to suppress caveolin-1 expression, positively feeding back on its own signaling pathway
by releasing Jak2 from caveolin-1 inhibition. The elevation in prolactin signaling triggers mammary gland development.

In cells where caveolin-1 activity inhibits growth and dif-
ferentiation, a transient decrease in caveolin-1 expression
or low caveolin-1 activity should be required for cell prolif-
eration and differentiation to be activated. Studies investi-
gating mammary gland development support this idea
(Figure 3B). The hormone prolactin, which activates the
growth and differentiation of the mammary epithelium dur-
ing pregnancy and lactation, suppresses caveolin-1 expres-
sion during lactation in mice [88]. In HC11 cells (used as a

model of mammary epithelial cell differentiation), caveolin-
1 inhibits prolactin signaling by binding and retaining the
prolactin receptor-associated kinase Jak2 in caveolae [89].
Caveolin-1 inhibition of prolactin signaling may also occur
in vivo, as during pregnancy the caveolin-1 null mouse
mammary gland shows dramatically accelerated
lobuloalveolar development, early milk production and a
premature lactation phenotype [89]. Furthermore, in im-
mortalized primary human mammary epithelial cells,
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estrogen and progesterone together upregulate caveolin-1
expression, and the authors of these findings have proposed
that in vivo the drop in these hormones upon birth (when
prolactin levels are high) is responsible for de-repression of
prolactin signaling and decreased caveolin-1 expression
during lactation [89]. In summary, this hypothesis is an ex-
ample where transient, carefully timed regulation of
caveolin-1 expression is important for cell differentiation
(summarized in Figure 3B).

Caveolin-1 effects on tissue repair

If transient downregulation of caveolin-1 expression/activity
is required for cell proliferation and differentiation, it may
also be required for tissue repair. Volonte and colleagues
have shown that such temporal changes in caveolin expres-
sion occur during tissue regeneration in skeletal muscle
[90]. Caveolin-1 is expressed in muscle satellite cells in
mice and in myogenic precursor cells in vitro [90].
Downregulation of caveolin-1 expression in these cells was
shown to be a pre-requisite for their proliferation, migra-
tion and differentiation to repair muscle wounds in vivo
and in vitro [90]. Following myogenic differentiation,
caveolin-3 is expressed in mature multinucleated myotubes,
and caveolin-1 is re-expressed in undifferentiated myogenic
precursor cells that surround myotubes after wound
healing is complete [90] (summarized in Figure 4A). This
event agrees with a requirement for transient
downregulation in caveolin expression for progenitor cell
proliferation and differentiation to mediate tissue repair.
Further supporting this idea, muscle regeneration is delayed
in caveolin-1 overexpressing mice [90] and caveolin-1-
overexpressing myogenic precursor cells fail to differentiate,
to migrate and to proliferate to repair wounds in vitro [90].

There are other examples of drops in caveolin expression
during reparative processes. For example, in the corneal
epithelium, levels of caveolin-1 expression are inversely re-
lated to wound healing capacity [91]. In the rat sciatic
nerve, caveolin-1 expression also increases as Schwann cells
differentiate into a myelinating phenotype, but decreases
upon their de-differentiation in response to injury [92]. This
may occur because caveolin-1 is only present in the differ-
entiated Schwann cell, with a functional role in cholesterol
transport, and/or occur because the drop in caveolin-1 ex-
pression allows cells to proliferate in response to injury [92]
(Figure 4B). Meanwhile, caveolin-1 appears to inhibit rat
fetal neural progenitor cell neuronal differentiation, and
downregulation in caveolin-1 occurs in these cells upon
hypoxia-induced neuronal differentiation [76].

Caveolin-1 expression is also reduced in mouse hearts 3
days following cryoinjury [93]. The return of caveolin-1 ex-
pression to normal levels is important for later stages of
cardiac repair, however, suggestive of a positive role for
caveolin-1 in part of the process [93]. Also, in rat heart tis-
sue, translocation of caveolin-3 and the caveolin-1a isoform
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out of caveolae upon aging or infarction may contribute to
tissue degeneration/disease pathology [94], while the
caveolin-1 scaffolding domain can protect against poly-
morphonuclear neutrophil reperfusion injury [95]. Caveolin
proteins may thus be positively involved in the maintenance
of healthy heart tissue. Caveolin-1 may be particularly im-
portant for repair in the cardiovascular system, because it is
required for the formation of new blood vessels [21,96]. In
contrast to its anti-proliferative role in most other cell
types, caveolin-1 is needed for the induction of mouse pul-
monary microvascular endothelial cell proliferation in re-
sponse to a disruption in laminar flow [97]. The
requirement for caveolin-1 in new blood vessel formation
may be a reason why caveolin-1 is vital for collateralization
following ischemia in tissues such as the hindlimb [98] and
why caveolin-1 deficiency can lead to an increased infarc-
tion volume upon cerebral ischemia [99].

Liver regeneration is another example where caveolin-1
may actually be required for cell proliferation and tissue re-
pair. Caveolin-1 null mice have reduced survival after par-
tial hepatectomy [100], and those that survive have a
greatly reduced liver regeneration index compared with
controls [100]. Caveolin-1 appears to be required for lipid
droplet formation, a crucial step in the proliferative re-
sponse of hepatocytes during liver regeneration [100]. A
lack of caveolin-1 regulation of mitochondrial cholesterol
levels in these mice has also been suggested to impair me-
tabolism (and thus affect proliferation) to contribute to the
phenotype [12]. However, others have found that caveolin-1
is dispensable for liver regeneration in mice [101] and that
caveolin-1 deficiency even accelerates liver regeneration
[102]. This discrepancy in results could be due to the use of
two different knockout animals [100,101]. Meanwhile,
caveolin-1 may also have a positive role in regeneration in
the kidney; it is expressed in regenerating proximal tubules
after gentamicin-induced acute renal failure in rats and
may have a role in the regenerative process by modulating
EGF and platelet-derived growth factor signaling [103]. In-
deed, perhaps in cases where caveolin-1 is required for re-
pair and regeneration, caveolin-1 inhibition of other
pathways is beneficial for signal pathways that activate
repair.

Caveolin-1 may also have a positive role in cutaneous
wound healing. Endocytosis of [;-integrins in fibroblasts
occurs via a pathway involving syndecan-4, protein kinase
C alpha, RhoG and caveolin-1, and this process is crucial
for fibroblast recruitment and migration during wound
healing [104]. Indeed, caveolin-1 null mice have signifi-
cantly slower skin wound healing than wild-type mice
[105]. Caveolin-1 may also have a positive role in regulating
the formation of the lipid-rich outermost layer of the epi-
dermis following injury by promoting keratinocyte terminal
differentiation (programmed cell death) into corneocytes
[106].
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In summary, caveolin-1 may positively or negatively con-
tribute to tissue repair depending on the tissue. This con-
text dependence is possibly due to caveolin-1-negative and
caveolin-1-positive regulation of different cell signaling
pathways, but much further research is required to under-
stand the role of caveolin-1 in tissue repair.

Caveolin-1 regulation of stem cell homing and mobilization
Migration is an important aspect of stem cell function.
Caveolin-1 has an important role in promoting directional
cell migration in other cell types (reviewed in [107]), and
may also be involved in stem cell migration. Caveolin-1

expression is required for EGF and fibronectin-induced mi-
gration of ESCs [49,108] and may also affect stem cell
mobilization and homing. Caveolin-1 expression appears to
enhance murine renal MSC adhesion to post-ischemic renal
tissue [109]. This adhesion occurs via interaction of stem cell
CXCR4 receptors with stromal cell-derived factor-1 on the
target cell, and ayf;(VLA4)—vascular cell adhesion mol-
ecule-1 interactions [109]. Caveolin-1 may be required for
CXCR4 interactions (Figure 5A), because membrane rafts
are important for CXCR4—stromal cell-derived factor-1 in-
teractions in human CD34" hematopoietic stem/progenitor
cells [110]. Meanwhile, as summarized in Figure 5B, studies
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by Sbaa and colleagues suggest caveolin-1 expression is re-
quired for mobilization of progenitor cells from bone mar-
row reserves in mice [111]. In vitro experiments suggest this
may be because caveolar internalization of CXCR4 receptors
in response to soluble stromal cell-derived factor-1 may be
important for progenitor cell mobilization [111].

Aging

Traditionally, reactive oxygen species-mediated damage to
cellular components has been thought to cause aging [112].
Caveolin-1 can protect against oxidative stress by regulating
mitochondrial cholesterol levels, which affect the levels of
the antioxidant glutathione in mitochondria [113] (Figure 1).
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Accordingly, the accumulation of mitochondrial cholesterol
and reactive oxygen species in the liver and brain of
caveolin-1 null mice contributes to disease progression in
degenerative disease models (steatohepatitis, Huntington’s
disease, Alzheimer’s disease) [113], and these animals dem-
onstrate some signs of accelerated aging, particularly in the
brain [114,115]. This aging may be due to decreased brain
mitochondrial glutathione levels [113]. However, the aging
may also or solely be due to increased production of amyl-
oid-P protein from amyloid precursor protein, the process-
ing of which is normally regulated in membrane rafts [114].
Meanwhile, it is now clear that reactive oxygen species do
not initiate aging and that, although they may have dam-
aging effects on macromolecules, they may have beneficial
effects on age-related cell signaling [116].

A positive role for caveolin-1 in aging agrees more with
the mostly quiescent effects of caveolin-1 on cell biology
discussed above. Also, caveolin-1 promotes insulin signaling
and adipocyte lipid droplet storage [117-119]. Caveolin-1
could therefore have a general role in inhibiting continued
growth and differentiation and slowing metabolism, per-
haps as a response to completion of tissue formation and
aging. In turn, this may mean that reducing caveolin-1 ex-
pression/activity could reverse aging effects in certain cells/
tissues. Indeed, caveolin-1 expression increases with age in
a number of rat tissues and in human diploid fibroblasts
[120], and reducing caveolin-1 expression in the latter re-
stores responsiveness to EGF [121]. Moreover, caveolin-1
null mice are lean, resistant to diet-induced obesity [119],
insulin resistant [118] and have decreased levels of the
adipokine leptin [119]. Conversely, plasma levels of leptin
are increased in aged mice [122] and reducing the activity
of nutrient sensing pathways (for example, insulin signal-
ing) is known to increase longevity in several species [123].
In humans, insulin resistance is a side effect of treatment
with rapamycin, the inhibitor of mammalian target of
rapamycin [124], which is known to slow aging in mice
[125,126]. Whether rapamycin’s anti-aging effects could be
partly attributed to inhibition of caveolin-1/caveolae activity
remains to be elucidated and warrants further investigation;
one would not be surprised if caveolin-1 could affect stem
cell aging, which rapamycin has been shown to do [126].

The activation of stem cells is dysregulated with age in
mouse muscle [127-129] and, as Volonte and colleagues
have shown that caveolin-1 expression delays murine skel-
etal muscle regeneration [90], one could hypothesize that
an age-related increase in caveolin-1 expression may be re-
sponsible for an age-related decline in mouse muscle regen-
erative potential. Interestingly, aged satellite cells have
impaired activation of Notch-Delta signaling [128], and pre-
mature activation of Wnt signaling in these cells causes fi-
brosis [129]. Caveolin-1 can affect the propagation of both
Wnt and Notch signaling pathways in other progenitor
cells [39,40,73,87]. Furthermore, parabiotic pairings of old
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rats with young rats increases aortal and muscle cholesterol
uptake in the older animals [130]. An increase in intracellu-
lar cholesterol levels promotes caveolin-1-directed choles-
terol efflux and caveolae formation, and free cholesterol
promotes caveolin-1 expression [33,80]. Perhaps older tis-
sues thus have a greater tendency to absorb cholesterol,
which in turn increases caveolin-1 activity and caveolae for-
mation. Meanwhile, systemic factors released by young
mice can reactivate resident stem cells in aged mice and re-
plenish their reparative capacity [128]. One would therefore
be interested to determine whether factors in young plasma
affect cholesterol metabolism and caveolae activity in old
cells.

Mechanosensing

Mechanical stimulation and focal adhesion signaling can
regulate stem cell differentiation [131], including fluid shear
forces at the surface of the cell [132]. Caveolae and
caveolin-1 are important for mechanosensing and the
propagation of mechanotransduction pathways in many cell
types, particularly cells exposed to shear forces [133-144].
The actual structure of caveolae even provides a membrane
reserve that can buffer stresses on the cell membrane
caused by mechanical stretch and osmotic swelling
[145-147] (as shown in Figure 1). The role of caveolae and
caveolin-1 in stem cell mechano-responses may therefore
also be worth investigation. Perhaps it is possible that
mechanical perturbations to caveolae can activate differen-
tiation and proliferation and repair pathways in quiescent
stem cells.

Conclusions

In summary, caveolin-1 affects several aspects of stem cell
biology, including proliferation, differentiation, substrate-
driven differentiation, homing and mobilization. We predict
that alteration to caveolin-1/caveolar activity is a prerequis-
ite for stem cell activation and differentiation, and that in-
creased caveolin-1 expression with age may implicate the
protein in age-related declines in tissue regenerative poten-
tial. However, because of the multiple (and probably con-
text-dependent) effects of caveolin-1, this will not apply to
all cells and tissues. Promotion of caveolin-1 activity may
be desirable for some areas of regenerative medicine (for
example, mobilization of bone marrow stores of progenitor
cells), while inhibition may be desirable in others (for ex-
ample, to reverse muscle aging, increase bone density, or
improve in vitro expansion of adult stem cell harvests). Ma-
nipulation of caveolin-1 expression/activity may be possible
in specific tissues in vivo; for example, via siRNA ap-
proaches or modulation of cholesterol biosynthesis. How-
ever, much research is required to define caveolin-1
function in different stem cells and to determine whether
manipulation of membrane signaling platforms such as



Baker and Tuan Stem Cell Research & Therapy 2013, 4:90
http://stemcellres.com/content/4/4/90

caveolae could be beneficial in stem cell therapies and re-
generative medicine.
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