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Abstract

Introduction: The horse is a valuable species to assess the effect of allogeneic mesenchymal stromal cells (MSCs) in
regenerative treatments. No studies to date have examined recipient response to major histocompatibility complex
(MHC)-mismatched equine MSCs. The purposes of this study were to immunophenotype MSCs from horses of
known MHC haplotype and to compare the immunogenicity of MSCs with differing MHC class Il expression.

Methods: MSCs and peripheral blood leukocytes (PBLs) were obtained from Thoroughbred horses (n = 10) of
known MHC haplotype (ELA-A2, -A3, and -A9 homozygotes). MSCs were cultured through P8; cells from each passage
(P2 to P8) were cryopreserved until used. Immunophenotyping of MHC class I and Il, CD44, CD29, CD90, LFA-1, and
CD45RB was performed by using flow cytometry. Tri-lineage differentiation assays were performed to confirm MSC
multipotency. Recombinant equine IFN-y was used to stimulate MHC class Il negative MSCs in culture, after which
expression of MHC class Il was re-examined. To assess the ability of MHC class Il negative or positive MSCs to
stimulate an immune response, modified one-way mixed leukocyte reactions (MLRs) were performed by using
MHC-matched and mismatched responder PBLs and stimulator PBLs or MSCs. Proliferation of gated CFSE-labeled
CD3+ responder T cells was evaluated via CFSE attenuation by using flow cytometry and reported as the number of
cells in the proliferating T-cell gate.

Results: MSCs varied widely in MHC class Il expression despite being homogenous in terms of “stemness” marker
expression and ability to undergo trilineage differentiation. Stimulation of MHC class Il negative MSCs with IFN-y
resulted in markedly increased expression of MHC class II. MLR results revealed that MHC-mismatched MHC class
lI-positive MSCs caused significantly increased responder T-cell proliferation compared with MHC-mismatched
MHC class ll-negative and MHC-matched MSCs, and equivalent to that of the positive control of MHC-mismatched
leukocytes.

Conclusions: The results of this study suggest that MSCs should be confirmed as MHC class Il negative before
allogeneic application. Additionally, it must be considered that even MHC class Il-negative MSCs could upregulate MHC
class Il expression if implanted into an area of active inflammation, as demonstrated with in vitro stimulation with IFN-y.
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Introduction

The immune status and immunosuppressive properties
of adult bone marrow-derived mesenchymal stromal
cells (MSCs) have been investigated in multiple species
over the past decade with conflicting results [1-4]. Al-
though MSCs are commonly thought of and referred to
as immunoprivileged in the literature, multiple studies
in both humans and mice have demonstrated that allo-
geneic adult bone marrow-derived MSCs are capable of
eliciting immune responses both in vitro and in vivo
[1,5-9]. In these studies, the immunosuppressive effects
of MSCs were unable to prevent an immunogenic re-
sponse in vitro, or to prevent MSC rejection in vivo.
Complicating our understanding of the immune status
of MSCs is the fact that not all MSCs described in the
literature have the same major histocompatibility com-
plex (MHC) class II expression profile [5,6,10], and some
studies did not include MSC immunophenotyping and/
or proper experimental controls [1].

Adult mesenchymal stem cells are increasingly used in
regenerative therapies for equine patients [11-16]. In
cases in which treatment is indicated at the time of diag-
nosis, the use of banked allogeneic MSCs would be ad-
vantageous instead of having to wait several weeks to
culture autologous MSCs. Bone marrow-derived MSCs
isolated from young-adult horses have been previously
phenotyped during mid-late passage (P3 to P7) as MHC
class II negative [17-19], and equine allogeneic MSCs
have been reported to be both immunoprivileged and
immunosuppressive in vitro [19], as well as nonimmuno-
genic in vivo [20]. No studies have examined the immu-
nophenotype of equine MCSs isolated from horses of
varying ages or sequentially over early to late passages.
In addition, no studies to date have used MSCs and leu-
kocytes isolated from horses of known MHC haplotype,
which is essential for performing MHC-matched and
MHC-mismatched studies. As the horse is a valuable
species for assessing the effect of MSC treatment on
musculoskeletal disorders such as tendonitis, cartilage
damage, and osteoarthritis [13,21-26], it is critical to
understand the immune status of equine MSCs before
evaluating the use of allogeneic MSCs for “off the shelf”
therapy in such models.

The purposes of this study were (a) to phenotype
P2-P8 bone marrow-derived MSCs from horses of
known MHC haplotypes; and (b) to compare the im-
munogenicity of MSCs with differing immunopheno-
types, particularly in regard to MHC class II expression,
through modified one-way mixed leukocyte reactions
(MLRs). This is the first equine study to evaluate the im-
mune response elicited by MHC-matched and MHC-
mismatched MSCs, including controls of MHC-matched
and -mismatched peripheral blood leukocytes (PBLs). Our
first hypothesis, based on previous human early-passage
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MSC immunophenotyping [10], was that early-passage
equine MSCs would be heterogeneous in MHC class II
expression. Our second hypothesis was that MHC-
mismatched MHC class II-negative MSCs would have low
immunogenicity in vitro, whereas those that were positive
would be immunogenic.

Methods

Horses

Thoroughbred horses of known MHC haplotype belong-
ing to the Equine Genetics Center at the James A. Baker
Institute for Animal Health at Cornell University were
used in these studies. All horses were MHC homozy-
gotes of equine leukocyte antigen (ELA) haplotypes
ELA-A2, ELA-A3, or ELA-AY9, as previously determined
by ELA serotyping, direct MHC gene sequencing, and
microsatellite typing [27-30]. The Institutional Animal
Care and Use Committee of Cornell University approved
the use of horses in these studies.

Peripheral blood leukocytes

Blood was collected via jugular venipuncture with exten-
sion sets (Baxter Healthcare, Deerfield, IL, USA) and 16-
gauge needles into 500-ml evacuated containers (Baxter
Healthcare, Deerfield, IL, USA) containing 7,500 units
of heparin (Sigma-Aldrich, St. Louis, MO, USA) each.
Plasma was allowed to separate for 20 minutes at room
temperature, and peripheral blood leukocytes (PBLs)
were then isolated from the plasma via carbonyl iron
(Sigma-Aldrich) granulocyte depletion and Ficoll-Paque
Plus (Amersham Biosciences, Piscataway, NJ, USA)
gradient centrifugation [31]. PBLs were resuspended
in RPMI 1640 medium (Gibco, Grand Island, NY,
USA) containing 10% fetal bovine serum (FBS), 0.1 mM
2-mercaptoethanol, penicillin (100 units/ml), and strepto-
mycin (100 pg/ml), and fresh cells were used for all
experiments.

Dermal fibroblasts

For dermal fibroblast isolation, 6-mm dermal punch
biopsies were collected aseptically from the neck under
standing sedation with local anesthesia and placed into
a 100-mm tissue-culture dish containing phosphate-
buffered saline (PBS) with penicillin (100 units/ml) and
streptomycin (100 pg/ml). The biopsies were then indi-
vidually rinsed with 70% ethanol, quickly passed through
the flame of a Bunsen burner, and placed into to a new
100-mm tissue-culture dish containing PBS with penicil-
lin and streptomycin. The epidermis was then sharply
dissected from the dermis on each biopsy by using a
number 10 scalpel blade, and discarded. The dermal
biopsies were digested overnight in a spinner flask at
37°C with collagenase IV (Life Technologies, Carlsbad,
CA, USA) at a concentration of 7,500 units/gram
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tissue diluted in dermal fibroblast (DF) media consist-
ing of high glucose (4 g/dl) DMEM media (Gibco) con-
taining 10% FBS, penicillin (100 units/ml), and
streptomycin (100 pg/ml) at a volume of 5 ml/g of tissue.
After digestion, the cell suspension was passed through a
100-pm cell strainer, pelleted, washed with PBS, and then
plated onto 175 cm? tissue-culture flasks at a density of
1 x 10* cells/cm? in DF media. The DFs were culture ex-
panded to P2. Cells to be aliquoted and cryopreserved for
flow cytometry were pelleted after dissociation, resus-
pended in freeze media (DF media with 10% FBS and 10%
dimethyl sulfoxide), and frozen at 5 x 10° cells/cryovial.

Bone marrow aspirate collection and isolation of MSCs
Bone marrow aspirate was collected aseptically from the
sternum of 10 horses by using 11-gauge Jamshidi bone
marrow biopsy needles under standing sedation with
local anesthesia. For each harvest, a total of 120 ml of
aspirate was collected into 60-ml syringes containing
25,000 units of heparin each. Three horses underwent a
second aspirate collection 2 months after the first, for a
total of 13 aspirates (six ELA-A2, six ELA-A3, one ELA-
A9 haplotypes). Bone marrow aspirates were purified via
Ficoll-Paque Plus (Amersham Biosciences) gradient cen-
trifugation, as previously described [32] and plated onto
100-mm tissue-culture plates in low glucose (1 g/dl) DMEM
media (Gibco) containing 10% FBS, 2 mM l-glutamine, peni-
cillin (100 units/ml), streptomycin (100 pg/ml), and basic fi-
broblastic growth factor (bFGE, 1 ng/ml).

MSCs were expanded over one passage, such that
cryopreserved passage 2 (P2) stocks were obtained for
each aspirate. P2 MSCs were later thawed and cultured
through P8 to examine potential MHC class II expres-
sion changes over time and to compare MHC class II
expression with that previously described for mid- to
late-passage cells [17-19]. At each passage, MSC stocks
were cryopreserved for immunophenotyping and mixed
leukocyte reactions (MLRs). Throughout culturing, media
were exchanged every 48 hours. Cells were passaged 1:3 at
approximately 80% subconfluency by using Accumax cell-
dissociation solution (Innovative Cell Technologies, Inc.,
San Diego, CA, USA) and plated at a density of approxi-
mately 1 x 10* cells/cm?. Cells to be cryopreserved were
pelleted after dissociation, resuspended in freeze media
(MSC media as described earlier with 10% FBS and 10% di-
methyl sulfoxide), and frozen at either 5 x 10° cells/cryovial
for expansion and flow cytometry or 1 x 10° cells/cryovial
for use in MLR experiments [21].

Immunophenotyping of MSCs

MSCs were immunophenotyped at each passage (two to
eight) for expression levels of MHC class I, MHC class
II, and a panel of positive (CD44, CD29, CD90) and
negative (CD11a/CD18, CD45RB) markers by using flow
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cytometry. Antibodies for these markers were previously
validated for the horse and described by our laboratory
[32]. Dilutions of 1:200 (CD29, CD90), 1:100 (CD44), or
1:10 (MHC class I, MHC class II, CD11a/CD18, CD45RB)
were used, according to the manufacturer’s directions for
commercial antibodies and according to previous experi-
ence for antibodies produced in the Antczak Laboratory
[32]. PBLs and P2 DFs were used as controls. MSCs from
each horse were directly compared with their own PBLs
for expression levels of MHC class II to ensure that any
variability in MSC MHC class II expression was not due
to individual horse variability in MHC class II antibody
binding.

Cells were pelleted in aliquots containing approxi-
mately 1 x 10° cells on 96-well V-bottom plates and
treated with a 20-minute blocking step by using 10%
normal goat serum in phosphate-buffered saline (PBS).
The cells were pelleted and resuspended in unconju-
gated primary monoclonal antibody and incubated for
45 minutes at 4°C. Cells were then washed, a secondary
fluorescent-conjugated goat anti-mouse IgG antibody
(fluorescein isothiocyanate (FITC; read on FL1) or allo-
phycocyanin (APC; read on FL4); BD Biosciences, San
Jose, CA, USA) was applied to the unconjugated anti-
bodies, and the samples incubated for an additional
45 minutes at 4°C. Cells were washed and then resus-
pended in PBS and analyzed on a FACSCalibur (Becton
Dickinson Immunocytometry Systems) flow cytometer
equipped with 488-um argon and 635-pm red diode la-
sers and BD Cell Quest analysis software (BD Biosci-
ences). Cells exposed to mouse antiparvovirus antibody
and FITC or APC-conjugated secondary antibodies were
used as negative isotype controls.

Cells were gated as previously determined for cultured
MSCs by our laboratory [32], and data were collected on
2 x 10* cells for each sample.

MSC differentiation assays

To verify that the MSCs were capable of tri-lineage dif-
ferentiation, 5 x 10° P3 cells were used for adipogenic,
osteogenic, and chondrogenic induction assays [32]. In-
duced P3 DFs were used as a control, in addition to
noninduced P3 MSCs.

Adipogenic induction was performed by using the
commercially available STEMPRO® Adipogenesis Differ-
entiation Kit (Gibco) according to the manufacturer’s in-
structions. Media was exchanged every 3 to 4 days until
termination of induction on day 14. At that time, cells
were fixed in 4% paraformaldehyde, stained with Oil-
Red-O for identification of lipid inclusions, and counter-
stained with hematoxylin. Stained cells were imaged with
standard microscopy and assessed for Oil-Red-O staining.

Osteogenic induction was performed by using the com-
mercially available STEMPRO® Osteogenesis Differentiation
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Kit (Gibco) according to the manufacturer’s instructions.
Media was exchanged every 3 to 4 days until termination of
induction on day 14, at which time the cells were fixed in
4% paraformaldehyde, stained with 2% aqueous Alizarin
Red for identification of calcium deposits, and counter-
stained with hematoxylin. Stained cells were imaged with
standard microscopy and assessed for Alizarin Red staining.

Chondrogenic induction was performed on pellet cul-
tures containing 5 x 10° cells/pellet [33] by using the
commercially available STEMPRO Chondrogenesis Dif-
ferentiation Kit (Gibco) according to the manufacturer’s
instructions. Media was exchanged every 3 to 4 days
until termination of induction on days 14 and 28. Pellets
were fixed in 4% paraformaldehyde, embedded in paraf-
fin, and sectioned (4 pum). Sections were stained with
Safranin-O/fast green and Alcian blue, counterstained
with hematoxylin, and assessed for matrix metachrom-
asia by using standard microscopy.

IFN-y stimulation of MSCs

To determine whether equine MSCs were capable of up-
regulating their MHC class II expression, recombinant
equine IFN-y (R&D Systems Inc., Minneapolis, MN,
USA) was used to stimulate MSCs in culture, after
which expression levels of MHC class II were reassessed
with flow cytometry. MSCs were plated on 100-mm
tissue-culture plates at a density of 1 x 10* cells/cm® in
MSC media, as described earlier, and allowed to adhere
to plates. At 24 hours in culture, media on control plates
were exchanged with fresh MSC media, whereas media
on treated plates were exchanged with fresh MSC media
containing 100 ng/ml of IFN-y [17,34,35]. At 72 hours,
media on control and treated plates were again ex-
changed in the same manner. At 96 hours, cells were
dissociated from the plates and analyzed for MHC class
IT expression by using flow cytometry, as described earl-
ier for immunophenotyping.

MHC class Il antibody comparison

Because previously published studies examining MHC
class II expression levels of equine MSCs with flow cy-
tometry mostly used a commercially available MHC
class II antibody (clone CVS20; AbD Serotec, Raleigh,
NC, USA) [19], we compared this antibody with the one
used in this study for immunophenotyping (cz11, clone
130.8E8D9, Laboratory of Dr. D. Antczak, Cornell Uni-
versity, Ithaca, NY, USA). Both antibodies were gener-
ated from mouse hybridomas and are of the IgGl
isotype. Clone CVS20 was used at a dilution of 1:100, as
recommended by the manufacturer, and cz11, clone
130.8E8D9 was used at a dilution of 1:10, as stated earl-
ier. PBLs, MSCs, and MSCs stimulated with IFN-y were
used to make comparisons in MHC class II expression
levels by using the two antibodies. For both primary
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mouse anti-horse MHC class II antibodies, a secondary
goat anti-mouse APC antibody (BD Biosciences) was
used. Cells exposed to mouse antiparvovirus antibody
with the same secondary antibody were used as negative
isotype controls.

Modified one-way mixed leukocyte reactions

To assess the ability of MSCs to stimulate an immune
response, modified one-way mixed leukocyte reactions
(MLRs) were performed in duplicate on 24-well tissue-
culture plates by using MHC-matched and mismatched
responder PBLs and stimulator MSCs. MHC-matched
stimulator PBLs were used as negative MLR controls
(baseline T-cell proliferation), and MHC-mismatched
stimulator PBLs were used as positive MLR controls. Re-
sponder PBLs were labeled with 5(6)-carboxyfluorescein
diacetate N-succinimidyl ester (0.25 pg/ml of cell solu-
tion, CFSE, Sigma-Aldrich and examined at two different
concentrations (1.5 x 10° and 2.5 x 10° cells/well). Pro-
liferative ability of responder cells was verified via mito-
gen stimulation with concanavalin A (ConA, 5 pg/ml;
Sigma-Aldrich). Stimulator MSCs were plated at 5 x 10*
cells/well in MSC media 24 hours before the addition of
responder PBLs, such that MSCs would be approximately
80% confluent by the end of the experiment. Stimulator
PBLs were irradiated with 9 Gy from a Cs-137 source to
inhibit proliferation and plated at 1.2 x 10° cells/well im-
mediately before the addition of responder PBLs.

The resultant ratios of responder-to-stimulator PBLs
was based on previously published equine MLR experi-
ments [31] and determined to be optimal for these studies
in preliminary experiments. Cultures were maintained for
5 days with modified RPMI 1640 media (1 ml/well) con-
taining 10% FBS, 0.1 mM 2-mercaptoethanol, penicillin
(100 units/ml), streptomycin (100 pg/ml), and basic fibro-
blastic growth factor (bFGE, 1 ng/ml). Media were not
exchanged over the 5 days. After culture, PBLs were
aspirated from the wells and stained with a primary
mouse anti-horse CD3 antibody (clone UC F6G-3.3;
Laboratory of Dr. J. Scott, University of California
Davis, Davis, CA, USA) and a secondary goat anti-mouse
APC antibody (BD Biosciences). The antibody-staining
process for flow-cytometry analysis was performed as de-
scribed earlier for immunophenotyping.

Proliferation of gated CFSE-labeled CD3-positive re-
sponder T cells was evaluated via CFSE attenuation by
using flow cytometry. Cells were first gated on FL4 so
that only the CD3-positive cells (T cells) were then ex-
amined on FL1 for CFSE attenuation. Nonstimulated re-
sponder T cells were used to set the boundary of
nonproliferating cells, such that all cells to the left
(lower fluorescence intensity on FL1) of that boundary
were determined to be proliferating. The number of cell
counts in the proliferating T-cell gate was measured, as
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well as the CFSE Geometric Mean Fluorescence Inten-
sity (GMFI) of all T cells, to reflect the extent of prolifer-
ation. Data were collected on the entirety of each sample
because cell numbers were being measured.

MLRs were performed in a total of five experiments by
using responder PBLs from four different horses (two
ELA-A2, one ELA-A3, and one ELA-A9 haplotypes) and
stimulator PBLs from three different horses (one ELA-A2
and two ELA-A3 haplotypes). In each experiment, T-cell
proliferation in response to MHC-matched MSCs, MHC-
mismatched MHC class II-negative MSCs, and MHC-
mismatched MHC class II-positive MSCs was assessed.
As stated, T-cell proliferation in response to MHC-
matched PBLs (MHC-matched MLR) was used as a
negative control and set as the baseline proliferation
value, whereas T-cell proliferation in response to
MHC-mismatched PBLs (MHC-mismatched MLR) was
used as a positive control. Because of naturally occur-
ring variation in PBL responses between horses and
experiments, the relative T-cell proliferation and rela-
tive GMFI in each experiment was reported as the fold
change from that of the MHC-matched MLR.

Statistical analyses
Immunophenotyping data were analyzed with Pearsons
correlations. MHC class II expression data obtained by

Page 5 of 13

the two different antibodies were analyzed with paired ¢
tests. MLR data were normalized by log transformation
and analyzed with analysis of covariance (ANCOVA),
with horse as a covariate, followed by the Tukey test for
multiple comparisons. All analyses were performed by
using Statistix 9 software (Analytical Software, Tallahassee,
FL, USA), and significance was set at P < 0.05.

Results

MSC isolation and immunophenotyping

MSCs were isolated and expanded from 13 of 13 bone
marrow aspirates. The percentage of P2 MSCs positive
for MHC class II expression varied widely among horses,
despite fairly consistent results for PBL. MHC class II ex-
pression, indicating that the MSC variation observed
was not due to differences in antibody binding (Figure 1).
P2 MSCs from 11 of the 13 aspirates were positive for
MHC class II expression with broad and diffuse expres-
sion peaks, as opposed to a well-defined narrow peak or
two or more peaks suggestive of different but limited cell
populations (Figure 1). P2 MSCs from only one horse
(horse 5, ELA-A3 haplotype) were negative for MHC
class II expression. P2 MSCs from all 13 aspirates had
the previously described equine MSC phenotype of
MHC I, CD44", CD29", and CD45RB'" (Table 1) [32].
Also consistent with previous studies between 17 and 21
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Figure 1 Flow-cytometric histogram analyses of MHC class Il expression in peripheral blood leukocytes (PBLs) and passage 2 bone
marrow-derived mesenchymal stromal cells (P2 MSCs) for horses 1 through 10. The open lines represent negative isotype control staining,
and the shaded curves represent MHC class Il staining. The percentage of positive cells is in the upper right-hand corner of each histogram. Note
the relatively minor variation in PBL MHC class Il expression between horses as compared with the major variation in P2 MSC MHC class
Il expression.
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Table 1 Percentage of equine mesenchymal stromal cells (MSCs) and dermal fibroblasts (DFs) positive for expression

of cell-surface markers

Percentage of cells positive

P2 MSCs: horse (ELA haplotype; age) MHCI MCH II CD44 CD29 CD90 LFA-1 CD45RB
1 (A3; 20 years) 98.77 5836 7594 91.59 30.35 56.05 1.34
2 (A2; 12 years) 98.01 59.95 9292 97.26 66.34 1143 046
3 (A3; 3 years) 98.67 70.31 90.80 96.86 64.60 15.64 0.57
3 (A3; 3 years) 2nd harvest 95.94 76.09 84.11 9747 6148 28.69 143
4 (A2; 3 years) 96.51 3242 7867 94.42 85.94 0.72 041
4 (A2; 3 years) 2nd harvest 98.16 82.61 85.84 96.45 88.50 8.20 3.27
5 (A3; 6 years) 98.20 0.18 95.59 97.68 94.37 030 1.58
5 (A3; 6 years) 2nd harvest 98.13 10.05 91.54 97.39 92.25 4.31 544
6 (A2; 5 years) 98.68 70.68 93.07 97.27 86.41 0.75 0.98
7 (A3; 19 years) 99.07 7467 9262 98.34 55.05 20.92 244
8 (A9; 11 years) 98.17 74.36 92.09 97.06 9227 292 1.17
9 (A2; 6 years) 99.22 58.75 96.39 98.93 96.39 0.79 295
10 (A2; 5 years) 99.57 9835 95.57 99.05 50.51 4349 138
P2 DFs 97.42 553 93.50 96.83 95.09 4.66 464

days of culture, variable expression of CD90 and CD11a/
CD18 surface molecules [32] was seen, with the majority
of the P2 MSCs having a phenotype of CD90™ and
CD11a/CD18' (Table 1). It is important to note that P2
DFs shared a very similar phenotype when examined by
using these markers (Table 1) but were consistently
MHC class II'® or negative.

Variability was observed in P2 MSC morphology, in
that some MHC class II-positive MSCs had the classic
long spindle-shaped morphology equivalent to that of
the MHC class II-negative MSCs, whereas other MHC

class II-positive MSCs were more triangular to polygonal
and smaller (see Additional file 1: Figure S1). All MSCs
isolated from older horses (=10 years of age) displayed
some degree of atypical morphology.

MSCs from six of the 11 aspirates positive for MHC
class II expression at P2 remained positive through P8,
whereas MSCs from the other five aspirates became
negative over time in culture, generally by P4 or P5
(Table 2). Later-passage MHC class II-positive MSCs ei-
ther maintained a broad and diffuse expression peak or
converted to a narrower peak, indicating upregulation of

Table 2 Percentage of equine mesenchymal stromal cells (MSCs) positive for expression of MHC class Il over multiple

passages in culture

Percentage of cell positive for MHC class Il

MSCs: horse (ELA haplotype; age) P2 P3 P4 P5 P6 P7 P8
1 (A3; 20 years) 58.36 54.67 63.07 53.54 46.22 51.72 3844
2 (A2; 12 years) 59.95 7858 98.14 97.25 9145 94.47 97.62
3 (A3; 3 years) 70.31 1.53 135 1.75 0.86 0.85 0.68
3 (A3; 3 years) 2nd harvest 76.09 65.22 59.74 64.83 5049 48.56 45.14
4 (A2; 3 years) 3242 8.19 4.03 4.52 2.56 049 0.50
4 (A2; 3 years) 2nd harvest 82.60 59.25 56.05 65.31 64.85 67.08 68.96
5 (A3; 6 years) 0.18 057 0.29 0.77 044 0.08 138
5 (A3; 6 years) 2nd harvest 10.05 1.05 0.90 1.59 047 0.51 045
6 (A2; 5 years) 70.68 72.32 64.62 22.10 232 1.93 129
7 (A3; 19 years) 74.67 66.49 93.13 94.54 93.68 93.33 9543
8 (A9; 11 years) 74.36 71.32 67.04 41.82 2597 8.16 0.90
9 (A2; 6 years) 58.75 41.79 4.92 0.78 0.76 048 0.46
10 (A2; 5 years) 98.35 91.92 95.69 96.15 94.89 91.39 85.01
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MHC class II in some cases (see Additional file 2: Figure
S2). P2 MSCs negative for MHC class II expression (two
aspirates from horse 5, ELA-A3 haplotype) remained
negative through P8. MSCs from all 13 aspirates each
maintained their morphology exhibited in P2, regardless
of whether they converted from MHC class II positive to
MHC class II negative. Only in this single ELA-A3
haplotype horse with MHC class II-negative MSCs from
P2-P8 could a correlation be made between MHC haplo-
type and MSC MHC class II expression. Interestingly, of
the MSCs isolated from the four older horses in this
study >10 years of age (2 ELA-A3, 1 ELA-A2, and 1
ELA-A9 haplotypes), all were strongly positive for MHC
class II at P2, and only those of the ELA-A9 haplotype
became negative later in the culture period at P7 and P8
(Table 2).

Over the culture period through P8, all MSCs main-
tained the phenotype of MHC I, CD44"™, CD29™, and
CD45RB", as well as the previously observed variability
in expression of CD90 and CD11a/CD18 surface mole-
cules. The median percentage of cells positive for CD90
was 89.75% (range, 3.58% to 99.64%), and the median
percentage of cells positive for CD11a/CD18 was 1.53%
(range, 0.12% to 70.85%). A weak but significant negative
correlation was found between CD90 and MHC class II
expression (r = —0.23; P = 0.03), and a moderate positive
correlation was found between CD11a/CD18 and MHC
class II expression (r = 0.40; P < 0.01).

MSC differentiation assays

Trilineage differentiation capacity of both MHC class II
negative and MHC class II positive MSCs was confirmed
through in vitro adipogenic, osteogenic, and chondro-
genic induction assays (Figure 2). DFs failed to undergo
trilineage differentiation by using the same induction as-
says, as determined by lack of staining and lack of
proper induced cellular morphology (Figure 2).

IFN-y stimulation of MSCs and MHC class Il antibody
comparison

Stimulation of MHC class II negative MSCs with IFN-y
resulted in markedly increased expression of MHC II
(Figure 3) in both the percentage of cells positive for
MHC class II and the fluorescence intensity of the cells.
No significant differences were found between MHC
class II expression levels (percentage of cells positive)
obtained by the two different antibodies for PBLs (1 = 3;
P = 0.83), MSCs (n = 4; P = 0.41), or IFN-y-stimulated
MSCs (n = 3; P = 0.20). Some variability was observed,
however, in the fluorescence intensity of the MSCs
stained with the different antibodies, with the commer-
cially available antibody (Antibody 2, clone CVS20) gen-
erating a more diffuse intensity than the antibody used
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in this study (Antibody 1, czll, clone 130.8E8D9)
(Figure 3).

Modified one-way mixed leukocyte reactions
MHC-mismatched MHC class II-positive MSCs caused a
significant increase in responder T-cell proliferation com-
pared with MHC-mismatched MHC class II-negative
MSCs at the lower responder PBL concentration of
1.5 x 10° cells (Figure 4A; P < 0.01) and compared
with both MHC-mismatched MHC class II-negative
and MHC-matched MSCs at the higher responder
PBL concentration of 2.5 x 10° cells (Figure 4B; P < 0.01).
At both responder T-cell concentrations, proliferation
caused by MHC-mismatched MHC class II-positive MSCs
was statistically equivalent to that caused by the positive
control of MHC-mismatched PBLs. MHC-mismatched
MHC class II-negative MSCs used in experiments were
Horse 5 (ELA-A3) P2 MSCs and Horse 9 (ELA-A2)
P5 MSCs. MHC-mismatched MHC class II-positive
MSCs used in experiments were Horse 7 (ELA-A3)
P2 MSCs and Horse 5 (ELA-A3) P2 IFN-y-stimulated
MSCs. Responder T-cell proliferation results for indi-
vidual experiments are shown in Additional file 3:
Figure S3.

Stimulation of responder PBLs with MHC-mismatched
MHC class II-positive MSCs resulted in lower responder
T-cell GMF], indicative of an increased number of cell di-
visions, compared with MHC-mismatched MHC class
II-negative MSCs (Figure 4C, D). This result was sig-
nificant at the higher responder PBL concentration of
2.5 x 10° cells (Figure 4D; P = 0.02). At both responder
PBL concentrations, stimulation of responder PBLs
with either MHC-mismatched MHC class II-negative
MSCs or MHC-mismatched MHC class II-positive
MSCs resulted in responder T-cell GMFI statistically
equivalent to that of both MHC-matched MSCs and
MHC-mismatched PBLs.

Discussion

This study reports the heterogeneous MHC class II
immunophenotype of bone marrow-derived MSCs iso-
lated from horses of varying ages and MHC haplotypes.
The MSCs were otherwise homogenous in terms of size
and granularity on flow cytometry (see Additional file 4:
Figure S4), traditional MSC “stemness” marker profile,
and ability to undergo trilineage differentiation. We hy-
pothesized that MSCs would variably express MHC class
II during early passages, as was previously shown for hu-
man MSCs [10], and that this expression would decrease
over time in culture, such that MSCs would be negative
for MHC class II expression at later passages. Although
this turned out to be the case for MSCs isolated from
certain horses, others remained strongly positive for
MHC class II expression through P8. This variability
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Figure 2 Trilineage differentiation assay results for MHC class Il-negative MSCs, MHC class Il-positive MSCs, and dermal fibroblasts
(DFs). (A-C) control Oil-Red-O staining of noninduced cell types; bar = 50 um. (D-F) Oil-Red-O staining after 14 days of adipogenic induction;

bar = 50 um. (G-1) control Alizarin Red staining of noninduced cell types; bar = 200 um. (J-L) Alizarin Red staining after 14 days of osteogenic
induction; bar = 200 um. (M-0) Alcian blue staining of pellet cultures after 14 days of chondrogenic differentiation; bar = 100 um. (P-R) Safranin-O/fast
green staining of pellet cultures after 14 days of chondrogenic differentiation; bar = 100 pm. Both MHC class Il-negative and MHC class Il-positive MSCs
were able to undergo trilineage differentiation, whereas DFs were not.
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observed in MHC class II expression was not due to differ-
ences in antibody binding between horses, as determined
by comparison of PBL. MHC class II expression and also
was not due to differences in antibody binding between the
antibody primarily used in this study (Antibody 1) and the
antibody used in previous studies (Antibody 2), as
demonstrated in Figure 3. Interestingly, even MSCs
isolated from different bone marrow aspirate harvests
from the same horse were found to differ in MHC
class II expression.

These results suggest that a combination of factors in-
cluding genetics, bone marrow aspirate quality, im-
munologic background at a given time, and culture
conditions are responsible for the extreme heterogeneity
of MHC class II expression observed. It is possible that
the bone marrow origin of these MSCs enabled such
heterogeneity, but a direct comparison to adult MSCs of
a different origin such as adipose tissue was not per-
formed, and therefore, a conclusion on this matter can-
not be made.

As for the majority of the equine MSCs in this study,
human and mouse MSCs found to be MHC class II posi-
tive displayed a diffuse or broad MHC class II expression
peak on flow cytometry histogram analysis, suggestive that
the individual MSCs themselves varied in terms of the

number of MHC class II molecules expressed on their cell
surfaces [5,6]. Both human and mouse MHC class II
MSCs in these previous studies otherwise had the ex-
pected profile of positive and negative markers for
“stemness” and were capable of trilineage differenti-
ation as typical for MSCs. Similarly, MHC class II-positive
equine MSCs in this study remained as one homogeneous
population within the previously determined MSC gate
and consistently expressed the CD44™, CD29", and
CD45RB phenotype [32].

At no time during flow-cytometric analysis of MSCs
from any horse did there appear to be two or more dis-
tinct cell types or cells with distinct marker profiles
within the MSC gate (Additional file 4: Figure S4). MHC
class II-positive equine MSCs in this study were capable
of in vitro adipogenic, osteogenic, and chondrogenic dif-
ferentiation. These findings suggest that equine MSCs
themselves are capable of extreme variation in MHC
class II expression. Because of the inability to distinguish
equine MSCs from DFs based on the “stemness” marker
profile alone, the tri-lineage differentiation assays were
critical in this study to prove that MHC class II-negative
and MHC class II-positive MSCs were multipotent
cells and that they had not differentiated into fibro-
blasts. To the authors’ knowledge, a direct comparison
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Figure 4 Modified one-way mixed leukocyte reaction (MLR) results at the lower responder cell concentration of 1.5 x 10° leukocytes
(A, C) and at the higher responder cell concentration of 2.5 x 10° leukocytes (B, D), as measured by relative responder T-cell proliferation
(A, B) and CFSE geometric mean fluorescence intensity (GMFI; C, D). Bars represent mean + SD of n = 5. Superscript letters indicate significant
differences between groups by ANCOVA, with horse as a covariate, followed by the Tukey test for multiple comparisons, P < 0.05. MHC-M,
MHC-matched; MHC-MM, MHC-mismatched. MHC-mismatched MHC class Il-negative MSCs caused significantly less responder T-cell proliferation
compared with both the positive control of MHC-mismatched PBLs (MHC-MM MLR) and MHC-mismatched MHC class Il-positive MSCs at both
responder leukocyte concentrations (A, B). MHC-mismatched MHC class ll-negative MSCs resulted in a significantly greater CFSE GMF,
indicative of fewer responder T-cell divisions, compared with MHC-mismatched MHC class ll-positive cells at the higher responder leukocyte
concentration (D).

between MSCs and DFs in terms of their ability to The variation observed in expression of the cell-
undergo trilineage differentiation has not previously surface markers CD90 and CD11a/CD18 (LFA-1) is diffi-
been performed. cult to interpret, as it was previously shown that equine
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bone marrow-derived MSCs express variable levels of
these markers, and that their expression changes over
time in culture, such that cells are CD90' and CD11a/
CD18" early on, but become CD90"™ and CD11a/CD18™
over time [32]. Such variability may be expected when
examining cells from different donors. A weak negative
correlation was found between CD90 and MHC class II
expression when analyzing the phenotype data as a
whole, but this correlation was not consistent for the
same MSCs over multiple passages. Numerous examples
of MSCs remained strongly positive for MHC class II
over several passages, but expression of CD90 increased
over those same passages. Similarly, although a moderate
positive correlation was found between CD11a/CD18
and MHC class II expression, numerous examples of
MSCs remained MHC class II positive over several pas-
sages but whose expression of CD11a/CD18 decreased.
These findings suggest that such correlations may be a
more temporal finding than a defining finding, as the
greatest numbers of MSCs were MHC class II positive
during early passages, when we would expect CD90 ex-
pression to be low and CD11a/CD18 expression to be
high [32].

The finding that the majority of passage 2 through 4
MSC:s in this study were positive for MHC class II expres-
sion has not been previously described. Equine studies
examining MHC class II expression and immunogenic
properties of MSCs to date have largely focused on later
passage cells (P3 or later) [17-19], even though most
MSCs used in experimental models and in clinical applica-
tions are early passage (P2) to maintain proliferative ability
[21,22,36,37]. This knowledge is critical for potential
allogeneic applications, as MHC-mismatched MHC class
II-positive MSCs incited significant proliferation of T cells
from responder horses of all ELA haplotypes (A2, A3, and
A9) examined in this study. This underscores the caution
that must be taken when using allogeneic MSCs.

Thoroughbreds were used in the present study, but
most breeds of horses can have multiple ELA haplotypes
[30,38]. It is therefore not safe to assume that donor
MSCs from any breed of horse can be used in a recipi-
ent horse of the same breed without the potential for an
immune reaction.

Conclusions

The results of this study suggest that bone marrow-derived
MSCs should be immunophenotyped and confirmed as
MHC class II negative before allogeneic application. As
demonstrated, examination of MSCs for classic morpho-
logic characteristics cannot be used alone to assess the
potential for MHC class II expression. Although all MSCs
in this study that displayed less-desirable morphologic
characteristics were MHC class II positive, some MSCs
displaying the classic morphology were also found to be
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MHC class II positive. Both the quantity and quality of
MSCs decreases with advanced donor age [39-41], so
younger horses are sought as donors. However, in the
present study, even MSCs isolated from the younger
horses that had the classic morphology were MHC class II
positive. Additionally, it must be considered that even
MHC class II-negative MSCs could potentially upregulate
their MHC class II expression if implanted into an area of
active inflammation, as was demonstrated on in vitro
stimulation with IFN-y.

In summary, we have shown that equine MSCs are het-
erogeneous in MHC class II expression and that MHC-
mismatched MHC class II-positive MSCs are capable of
inciting an immune reaction in vitro. All potential donor
MSCs should therefore be immunophenotyped and
screened for MHC class II expression. Further studies
are warranted to determine the in vivo response to
MHC-mismatched MSCs that are either MHC class II
negative or MHC class II positive, as well as the effect
of multiple injections of these cells on a recipient’s im-
mune response. Further research is also required to
determine the effect of MHC class II expression on
equine MSC immunosuppressive properties.

Additional files

Additional file 1: Figure S1. Examples of bone marrow-derived
mesenchymal stromal cell (MSC) morphology observed for MHC
class ll-negative cells (A and B) and MHC class Il positive cells

(C through F). Note that some MHC class Il negative cells (C and D) displayed
the classic spindle-shape morphology equivalent to that observed for
MHC class Il negative cells, whereas others displayed a less characteristic
morphology (E and F). Also note that the MSCs maintained their
morphology over multiple passages whether they converted to MHC
class Il negative or not. In the example shown here, MSCs from horse
9 had the same morphology at P2 (MHC class Il positive; D) as they
did at P5 (MHC class Il negative; B).

Additional file 2: Figure S2. Flow-cytometric histogram analyses of
MHC class Il expression in passage 2 (P2) and passage 8 (P8) bone
marrow-derived mesenchymal stromal cells (MSCs). The open lines
represent negative isotype control staining, and the shaded curves
represent MHC class Il staining. The percentage of positive cells is described
in the upper right corner of each histogram. Note the variability in both the
percentage of cells positive for MHC class Il expression at P8 as well as the
variability in fluorescence intensity for those MSCs that remained MHC class Il
positive at P8 (horses 7 and 10 in this figure).

Additional file 3: Figure S3. Responder T-cell proliferation results for
individual experiments (A through E) used to generate Figure 1A and
B. MHC-M, MHC-matched; MHC-MM, MHC-mismatched. Note that for
every experiment, the responder T-cell proliferation in response to
MHC-mismatched MHC class Il-positive MSCs was greater than that observed
for the negative/baseline control of MHC-matched PBLs (MVHC-M MLR),
MHC-mismatched MHC class Il-negative MSCs, MHC-matched MSCs.

Additional file 4: Figure S4. Dot-plot (FSC versus SSC) of gated P2
MSCs from horse 9. These MSCs were a homogeneous population within
the MSC gate but were positive for MHC class Il expression and displayed
a diffuse or broad MHC class Il expression peak on flow-cytometry
histogram analysis, as shown in Additional file 2: Figure S2. This suggests
that the individual MSCs themselves varied in terms of the number of MHC
class Il molecules expressed on their cell surfaces. All MSCs examined
displayed a similar homogeneous population within the MSC gate.
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